

MANGINI ASSOCIATES INC.

4320 West Mineral King Avenue Visalia, California 93291 (559) 627-0530

www.mangini.us

April 25, 2025
24001
02-122658
10-28
62125-41

ADDENDUM FOR:

NEW CLASSROOM WING AT SUNSET ELEMENTARY SCHOOL

COALINGA-HURON UNIFIED SCHOOL DISTRICT COALINGA, KINGS COUNTY, CALIFORNIA

Michael J. Scott ARCHITECT

MANGINI ASSOCIATES INC. 4320 W. Mineral King Avenue, Visalia, CA 93291 PHONE: (559) 627-0530 FAX: (559) 627-1926 C-34290

Wa Vang CIVIL ENGINEER

LANE ENGINEERS INC. 979 N. Blackstone Street, Tulare, CA 93274 PHONE: (559) 688-5263 FAX: (559) 688-8893 C-73146

ADDENDUM NO. 1

TO PROSPECTIVE BIDDERS:

This Addendum forms a part of the Contract Documents and modifies the Contract Documents dated July 31, 2024.

Bidders shall acknowledge receipt of this Addendum in the space provided in the Bid Form. Failure to do so may disqualify the Bidder.

This Addendum consists of 2 printed pages and the following Attachments:

Specification Section 04 2900 – Reinforced Unit Masonry Pre-Bid RFI Response Letter from Lane Engineers, Inc., dated March 31, 2025 Stormwater Pollution Prevention Plan (SWPPP) dated March 31, 2025

CHANGES TO THE PROJECT MANUAL

ITEM NO. 1.1: Refer to Section 00 0100 - Table of Contents:

Add new attached specification Section 04 2900 – Reinforced Unit Masonry.

ITEM NO. 1.2: Refer to Section 09 7210 – Dry Erase Wall Coverings:

Paragraph 2.2.A: Change to read as follows:

"Quantum Aluminum Tray: Clear satin, anodized aluminum, 36" long magnetic tray."

CHANGES TO THE DRAWINGS

- **ITEM NO. 1.3:** Refer to Lane Engineers, Inc., letter for changes to the Civil Drawings.
- **ITEM NO. 1.4**: Refer to attached Pre-Bid Request for Information response for clarifications to the Architectural drawings and specs.

END OF ADDENDUM NUMBER 1

SECTION 04 2900 - REINFORCED UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Provide reinforced unit masonry where shown on the Drawings, as specified herein, and as needed for a complete and proper installation.
- B. Related Sections:
 - 1. Documents affecting work of this Section include, but are not necessarily limited to, General Conditions, Supplementary Conditions, and Sections in Division I of these Specifications.
 - 2. Section 01 4520: Testing and inspection requirements.
 - 3. Section 07 9210: Joint Sealants.

1.2 SUBMITTALS

- A. General: Submit in accordance with Section 01 3300.
 - 1. Product Data: Submit manufacturer's descriptive literature and product specifications for each product. Include data to indicate compliance with the specified requirements.
 - 2. Installation Procedures: Submit manufacturers recommended installation procedures.
 - 3. Shop Drawings: Submit shop drawings for the reinforcing steel.
 - 4. Mill Certificates: Submit steel producer's certificates of mill analysis, tensile and bend test for reinforcement steel required for project.
- 1.3 DELIVERY, STORAGE, AND HANDLING
 - A. Comply with pertinent provisions of Section 01 6600.
 - B. Store masonry units above ground on level platforms which allow air circulation under the stacked units.
 - C. Cover and protect against wetting prior to use.

PART 2 - PRODUCTS

- 2.1 MATERIALS, GENERAL
 - A. Products specified are for establishing the type, design, and quality required. Products of equal or better type, design, and quality produced by other manufacturers will be considered provided the request for substitution is submitted in accordance with Section 01 2500.
- 2.2 CONCRETE MASONRY UNITS
 - A. Provide lightweight hollow load-bearing concrete masonry units complying with ASTM C90 in dimensions as indicated on the Drawings.
 - 1. Where dimensions are not indicated on the Drawings, provide units having nominal face dimensions of 16" long by 8" high by the depth shown or otherwise required.
 - 2. Provide accessory shapes as indicated or otherwise required.
 - 3. Color and Texture: As indicated on the Finish Schedule or selected by the Architect.

2.3 REINFORCEMENT AND ACCESSORIES

REINFORCED UNIT MASONRY

- A. Bars: ASTM A615, Grade 40 for #3 bars and smaller, Grade 60 for #4 bars and larger, using deformed bars for #3 and larger.
- B. Fabricate reinforcement in accordance with recommendations contained in CRSI "Manual of Standard Practices."
- C. Cleaning Reinforcing: Before placing, remove loose rust, ice and other coatings from reinforcing.

2.4 MORTAR

- A. Portland Cement: ASTM C150, Type II.
- B. Lime: Hydrated lime, ASTM C207.
- C. Aggregate: Clean, sharp, well graded aggregate free from injurious amounts of dust, lumps, shale, alkali, surface coatings, and organic matter; ASTM C144.
- D. Admixtures: Do not use admixtures unless specifically approved by DSA and the Architect.
- E. Water: Provide water free from deleterious amounts of acids, alkalis, and organic materials.

F. Mortar Mixing:

- 1. Compressive Strength: Minimum 1800 psi at 28 days.
- 2. Cement-Lime Mortar Proportions: Type S; ASTM C270.
 - a. Add lime to mixer last.
 - b. Measure materials in suitable calibrated devices. Shovel measurements will not be accepted.
- 3. Mechanically mix in a batch mixer for not less than three minutes, using only sufficient water to produce a mortar which is spreadable and of a workable consistency.
- 4. Re-temper mortar with water as required to maintain high plasticity.
 - a. On mortar boards, re-temper only by adding water within a basin formed with mortar, and by working the mortar into the water.
 - b. Discard and do not use mortar which is unused after 1-1/2 hours following initial mixing.

2.5 GROUT

- A. Portland Cement: ASTM C150, Type II.
- B. Aggregate: Clean, sharp, well graded aggregate free from injurious amounts of dust, lumps, shale, alkali, surface coatings, and organic matter; ASTM C404.
- C. Admixtures:
 - 1. Low Lift Grouting: Do not use admixtures for low lift grouting unless specifically approved by DSA and the Architect.
 - 2. High Lift Grouting: Sika Grout Aid, or other DSA approved admixture. Submit alternatives not less than 30 days prior to beginning grouting.
- D. Water: Provide water free from injurious amounts of acids, alkalis, and organic materials.
- E. Grout Mixing:
 - 1. Provide "fine grout" or "coarse grout" in locations required by CBC Section 2103A.3. Provide coarse grout in spaces 2" or more in width and in all filled-cell masonry construction.
 - 2. Compressive Strength: Minimum of 2000 psi at 28 days.
 - 3. Proportions: ASTM C476.

- 4. Adjust water content to provide proper workability and ensure proper placement without segregation under field conditions. Water content, expressed on a saturated surface-dry basis, shall not exceed 0.7 times the weight (mass) of cement.
- 5. Course Grout: Combine coarse and fine aggregates such that the fine aggregate part is not greater than 80% of total aggregate weight (mass) and at least 90% shall pass the 1/2" sieve.

2.6 BOLTS AND ANCHORS

- A. In no case shall any bolt or anchor be stabbed in place during or after the grouting. Provide templates or other means to secure embeds during the grouting process.
- B. Bent bar anchor bolts are not permitted in masonry construction; use headed bolts only.

2.7 ACCESSORY MATERIALS

A. Joint sealant and backing: Refer to Section 07 9210 – Joint Sealants.

PART 3 - EXECUTION

3.1 SURFACE CONDITIONS

A. Examine the areas and conditions under which work of this Section will be performed. Correct conditions detrimental to timely and proper completion of the Work. Do not proceed until unsatisfactory conditions are corrected.

3.2 ENVIRONMENTAL CONDITIONS

- A. Do not place masonry units when air temperature is below 40 degrees F.
- B. Protect masonry construction from direct exposure to wind and sun when erected in ambient air temperature of 99 degrees F in the shade, with relative humidity less than 50%.

3.3 INSTALLATION

- A. Do not commence installation of the work of this Section until horizontal and vertical alignment of foundation is plumb and square.
 - 1. Lay only dry masonry units.
 - 2. Use masonry saws to cut and fit masonry units.
 - 3. Set units plumb, true to line, with level courses accurately spaced; comply with tolerance limits of ACI 530.1-13, 3.3.G. Failure to comply with tolerances will be cause for rejection of work.
 - 4. Clean the top surface of foundation free from dirt, debris, and laitance, and expose the aggregate by blast cleaning prior to start of installing first course.
 - 5. Accurately fit the units to plumbing, ducts, openings, and other interfaces, neatly patching all holes.
 - 6. Keep walls continually clean, preventing grout and mortar stains. If grout does run over, clean immediately.
 - 7. Do not use chipped or broken units. If such units are discovered in the finished wall, the Architect may require their immediate removal and replacement with new units at no additional cost to the Owner.
- B. Laying Up:
 - 1. Build reinforced hollow-unit masonry to preserve the unobstructed vertical continuity of the cells to be filled. All head joints shall be solidly filled with mortar for a distance in from the face of the wall or unit not less than the thickness of the longitudinal face shells.
 - 2. Fully bed walls and cross webs forming such cells in mortar to prevent leakage of grout.

- 3. Vertical cells to be filled shall have vertical alignment sufficient to maintain a clear, unobstructed, continuous vertical cell measuring not less than 2" x 3", except the minimum cell dimension for high-lift grout shall be 3".
- 4. At the time of laying, all masonry units shall be free of dust and dirt.
- 5. Tooling: Tool joints to a dense, smooth surface.
- C. Coursing:
 - 1. Establish lines, levels, and coursing indicated; protect from displacement.
 - 2. Maintain masonry courses to uniform dimension. Form vertical and horizontal joints of uniform thickness.
 - 3. Bond: Running.
 - 4. Coursing: One unit and one mortar joint to equal 8".
 - 5. Mortar Joints: Concave.

3.4 REINFORCING

- A. Embed all reinforcing and wire ties in the grout. The clear space between masonry unit surfaces and reinforcing shall be a minimum of 1/2" for coarse grout.
- B. Place horizontal reinforcement in bond beam units with a minimum grout cover of 1" above steel for each grout pour. The depth of the bond beam channel below the top of the unit shall be a minimum of 1-1/2" and the width shall be 3" minimum.
- 3.5 CONDUITS AND PIPES IN MASONRY WALLS
 - A. Conduits up to 3/4" in diameter will be allowed in cells for vertical runs only. No horizontal runs are allowed except that vertical offsets between adjacent cells will be allowed to avoid interference and congestion with reinforcing steel and other embedded items.
 - B. Water, gas and other pipes may penetrate through a wall in a sleeve, but shall not be embedded in walls.
 - C. Reinforcing Cells: Limit conduit to one 3/4" diameter conduit per cell, provided the following conditions are maintained:
 - 1. Reinforcing steel shall be properly placed and shall not be relocated to accommodate conduit.
 - 2. Grout cover between conduit and reinforcing steel shall be 2.5 times the bar diameter with 1-1/2" minimum (1-1/2" at #5 bars, 1-7/8" at #6 bars).
 - 3. Maintain a minimum clear area within cell of 3" by 3" for consolidation by vibration.
 - D. Unreinforced Cells: Limit conduit to two 3/4" diameter conduit or one 1" diameter conduit per cell, provided the following conditions are maintained:
 - 1. Conduit shall not be placed closer than 3 diameters, center to center, to adjacent conduit.
 - 2. Maintain minimum clear area within the cell of 3" by 3" for consolidation by vibration.

3.6 GROUTING

- A. Perform grouting in strict accordance with CBC Section 2104A.
 - 1. Solidly fill all cells.
 - 2. Consolidate grout at time of pour by puddling with a mechanical vibrator, filling all cells of the masonry, and then reconsolidating later by puddling before the plasticity is lost.
 - 3. Provide workable mix suitable for placing without segregation and thoroughly mix.
 - 4. Place grout by pumping or an approved alternate method. Place before initial set or hardening occurs.
 - 5. Consolidate grout by mechanical vibration during placing and reconsolidate after excess moisture has been absorbed, but before workability is lost.

- 6. The grouting of any section of a wall shall be completed in one day, with no interruptions greater than one hour.
- B. Low-Lift Grouted Construction:
 - 1. Units shall be laid a maximum of 4'-0" before grouting, and all overhanging mortar and mortar droppings shall be removed.
 - 2. Grouting shall follow each 4'-0" of construction laid and shall be consolidated so as to completely fill all voids and embed all reinforcing steel.
 - 3. When grouting is stopped for one hour or longer, horizontal construction joints shall be formed by stopping the pour of grout not less than 1/2" nor more than 2" below the top of the uppermost unit grouted.
 - 4. Horizontal steel shall be fully embedded in grout in an uninterrupted pour.
- C. High-Lift Grouted Construction:
 - 1. Where high-lift grouting is used, the method shall be approved by the enforcement agency. Submit complete specifications to Architect prior to starting construction; CBC Section 2104A.1.3.1.1.1.2 and DSA IR 21-2.
 - 2. Cleanout openings shall be provided at the bottom of each pour of grout at all cells.
 - 3. Any overhanging mortar or other debris shall be removed from the insides of cell walls. The foundation or other horizontal construction joints shall be cleaned of all loose material and mortar droppings before each pour. The cleanouts shall be sealed before grouting.
 - 4. An approved admixture that reduces early water loss and produces an expansive action shall be used in the grout.
 - 5. Grout lifts shall be limited to 4'-0" in height, or 5'-0" with written approval from DSA.

3.7 CAULKING

A. Seal all expansion and control joints. Refer to Section 07 9210 – Joint Sealants.

3.8 QUALITY CONTROL TESTING AND INSPECTION DURING CONSTRUCTION

- A. The testing and inspection of masonry materials shall be in compliance with Section 01 4520 Testing and Special Inspection Services, CBC Chapter 17A, and CBC Section 2105A.
- B. The Owner will employ a testing laboratory to perform tests and to submit test reports. Sampling and testing for quality control during placement of masonry may include the following, as directed by the Architect.
- C. Inspections: All masonry work shall be performed only in the presence of the special masonry inspector.
- D. Manufacturer shall clearly identify and tag each pallet of material to simplify identification by materials testing lab.
- E. Mortar and Grout Compression Tests:
 - 1. Sample and test mortar specimens per ASTM C1586
 - 2. Sample and test grout specimens per ASTM C1019.
 - 3. Frequency: At the beginning of masonry work, take at least 1 test sample of mortar and grout on 3 successive working days, and take additional samples at least 1 week intervals thereafter. Take additional samples whenever any change in materials or job conditions occurs, or whenever in the judgement of the Architect or DSA such tests are necessary.
- F. Masonry Unit Unit Strength Method:
 - 1. Sample and test units, mortar, and grout to show compliance with the compressive strength required in CBC 2105A.
 - 2. Comply with "Unit Strength" or "Prism Test" method.

REINFORCED UNIT MASONRY

- G. Masonry Core Tests: Take masonry core tests in compliance with CBC Section 2105A.4; not less than 2 cores from the project and at least 1 core from each building for every 5,000 square feet of the greater of the wall area or the floor area or fraction thereof.
- H. Test Results will be reported in writing to Architect and Contractor within 24 hours that tests are made.
- I. Reinforcing steel testing will be required on this project; CBC Section 1910A.2; provide mill certificates.

3.9 CLEANING

- A. Inspection and Adjustment:
 - 1. Upon completion of the work of this Section, make a thorough inspection of installed masonry and verify that units have been installed in accordance with the provisions of this Section.
 - 2. Make necessary adjustments.
- B. Clean surfaces of masonry as required for proper application of the specified finishes.
- C. Provide light (whip clean) sandblast of all exposed CMU as specified in Section 03 3500. Protect adjacent surfaces.

END OF SECTION 04 2900

MANGINI ASSOCIATES INC. 4320 West Mineral King Avenue Visalia, California 93291 (559) 627-0530

www.mangini.us

PRE-BID REQUEST FOR INFORMATION

то:	Man	gini Associates Inc.				DATE:	04/22/2025
PROJECT:	Attn:			ntary School	CONTRACTOR'S RFI NO.: 01 ARCHITECT'S RFI NO.: PROJECT NO.: DSA APPL. NO.:		
Subject: Plan/Spec. Question:	Ref:	Tile / Flooring Please see attache	d 2nd page.				
Suggestion Attachmen	ts:				—		
	David 661-25	Silva 51-7401	Company: Fax:	AMG & Associates, Inc 661-251-7405	Title: Email:	Estimator estimating@a	mgassociatesinc.com
Response:		Included in Addendu	um No.:				
		Not Included in Futu		im			
By: Edga MANGINI A CC:	ir Sanch ASSOCI		_ Title:				

- 1. **Exterior Walls**: According to detail 13/A20, 6"x6" wall tile is shown to be installed over a mortar bed on exterior walls. Could you please confirm whether a mortar bed is required for exterior wall tile installation? If yes, kindly clarify who is responsible for providing the scratch coat and metal lath the plastering contractor or the tile contractor? THIS IS A MEANS AND METHODS QUESTION TO BE
- Interior Walls: As per detail 12/A14, 4 1/4" wall tile is shown to be installed over a setting bed on interior walls. Could you please confirm whether a full mortar bed is required for interior tile installation or if thin-set is acceptable? Also, if a mortar bed is required, who will be responsible for the scratch coat and metal lath?
- DETAILS BY THE TILE SUB. NO THIN SET. 3. As per sheet A13, Floor Finish 13 is noted as 2" x 2" ceramic mosaic tile and is associated with Finish F. However, the Finishes/Colors legend on the same sheet marks Finish F as "Not Used." Despite this, areas such as Toilet J7, J4 Staff, Boys and Girls (J15, J16), and Staff Toilet J17 appear to be designated for this finish. Could you please confirm whether these areas are to receive the Daltile Keystone 2"x2" mosaic tile in color D037 Pepper White ALL 2x2 TILE TO BE FINISH 'e' PEPPER WHITE.
- 4. According to sheet A11, the elevation for Toilet J7 shows a 2"x2" ceramic wall tile tagged as "G." However, per the finish schedule on sheet A13, tile tag "G" corresponds to a 4"x4" tile. Could you please confirm whether the tile in Toilet J7 should be 2"x2" or 4"x4"? USE 2x2 FINISH 'e' PEPPER WHITE UN THE SHOWER ALCOVE WALLS 3 SIDES. USE 4X4 FINISH 'g' ON ALL OTHER WALLS.
- 5. As per Section 093000 Tiling, under 2.2 Ceramic Tile, Note E.3, all interior and exterior wall corners are required to have standard bullnose units. However, Section 2.5 Metal Trim mentions that Schluter trims are acceptable. Please confirm if Schluter trim can be used in place of bullnose, or if bullnose trim is still required. USE STANDARD BULLNOSE UNITS ONLY.
- As per Sheet A13 Finish Schedule, CBP Prism grout is specified. However, Specification Section 093000, 2.4 (Installation Materials – D. Grout) mentions the use of epoxy grout. Could you please confirm which grout is to be used—CBP Prism or epoxy grout? USE EPOXY GROUT TYPICAL.
- According to detail 1/A3, the exterior drinking water fountain shows 6"x6" ceramic tile, but is tagged with "I" and "H," which correspond to 4"x4" tile in the finish schedule. However, Specification 093000 Section 2.2 under D. Exterior Wall Tile clearly identifies 3"x3" ceramic wall tile in a three-color pattern (D175, D322, D179).
 - Could you please confirm which tile should be used at the exterior drinking fountain-
 - a. The 3"x3" tile per the spec (Section 093000 2.2.D),
 - b. The 4"x4" tile per the finish schedule tags "I" and "H", or USE 4X4 AS PER THE FINISH SCHEDULE TAGS

ON TILE PATTERN SHOWN ON SHEET A13.

c. The 6"x6" tile shown in the drawing detail?

Please also confirm the correct color selection and style if the spec's 3"x3" pattern applies.

8. As per sheet A1 Overall Floor Plan, walk-off mats are shown at the entrances of classrooms J8, J9, J10, J11, J12, and J18. However, there is no specific material or product called out for these mats in the finish schedule, legend, or specifications. Could you please confirm whether a particular walk-off mat material or product is required for these locations? If not specified, can we proceed with a manufacturer and type of our choice that meets standard commercial performance criteria? USE HEAVY DUTY COMMERTIAL TYPE.

Civil • Structural • Surveying

March 31, 2025

Mangini Associates, Inc. 4320 West Mineral King Avenue Visalia, CA 93291

Attention: Edgar Sanchez

Project: New Classroom Wing at Sunset Elementary School Addendum no. 1 (MAI Project 24001) 985 Sunset Avenue Coalinga, CA Lane Project No. 24040

TO PERSPECTIVE BIDDERS:

This Addendum adds to the original Scope based on the Plans and Specifications dated July 31, 2024.

Bidders shall acknowledge receipt of this Addendum 1 in the space provided in the Bid Form. Failure to do so may disqualify the Bidder.

This addendum consists of SWPPP documents.

 Add Storm Water Pollution Prevention Plan for bidding and construction. These documents are to complement the requirements of the Project Specification Section 01 5725. The SWPPP permit will be obtained by the owner and will be issued to the contractor prior to the start of construction. The contractor shall obtain a Qualified SWPPP Practitioner (QSP) to oversee the construction site to ensure that the BMP's and other requirements within the SWPPP documents implemented as intended from start of construction to the end of construction regardless of permit status.

Sincerely,

Wa Vang, PE

STORMWATER POLLUTION PREVENTION PLAN

for

New Classrooms Wing Building at Sunset Elementary School

Project Location:

985 Sunset Avenue Coalinga, CA 93210

RISK LEVEL: 1

Legally Responsible Person (LRP):

Coalinga-Huron Unified School District 1408 California Street Coalinga, CA 93210 Rodney Bradley 559-935-7575

Project Address:

985 Sunset Avenue Coalinga, CA 93210

Estimated Project Dates:

Start of Construction: 05/26/2025 Completion of Construction: 10/31/2026

> SWPPP Prepared by: Wa Vang, PE, QSD

LANE ENGINEERS, INC. Civil • Structural • Surveying 979 North Blackstone Street Tulare, CA 93274 Phone: (559) 688-5263 / Fax: (559) 688-8893

LANE PROJECT NO. 24040

www.laneengineers.com

SWPPP Preparation Date: 03/31/2025

LANE ENGINEERS, INC. Civil • Structural • Surveying

Date:March 18, 2025To:Coalinga-Huron Unified School DistrictFrom:Wa VangSubject:New Classroom Wing at Sunset Elementary SchoolJob No:24040

To Whom it may Concern:

Below is a list of items that must be completed by either the Legally Responsible Person (LRP) or the Qualified SWPPP Practitioner (QSP) and inserted in the SWPPP.

- The LRP shall ensure that the SWPPPs for all traditional project sites are amended or revised by a Qualified SWPPP Developer (QSD) if major revisions become necessary. It shall be the responsibility of the General Contractor to hire a certified QSP to implement the SWPPP.
- 2) The LRP should provide a list and documentation of any "Duly Authorized Representative" that is allowed to sign for the LRP and other authorized individuals as mentioned in SWPPP Section 6.1. This documentation should be attached in **Appendix K**.
- 3) It shall be the responsibility of the QSP to perform all site sampling & monitoring, visual inspections, prepare rain event action plans, maintain field logs, submit non-compliance reports and violations, file all annual reports, and Notice of termination in accordance with the General Permit.
- 4) The QSP and the General Contractor shall be responsible for stabilizing inactive areas and finished slopes, as defined by the Construction General Permit. The stabilization method shall be left to the discretion of the General Contractor and his/her QSP.
- 5) The QSP will be responsible for documenting all training activities for his employees and attaching this information in **Appendix J**.
- 6) The QSP will be responsible for including a list of names of all contractors, subcontractors, and individuals who will be directed by the QSP. This list should be attached in **Appendix L**. The subcontractors working on the project should be notified about the General Permit and SWPPP requirements by the QSP.
- 7) The SWPPP is a living document. Please update the SWPPP when the QSP deems that alternative BMPs will be used or additional BMP's are added. If the control measures found on the site during inspection do not reflect what is in the SWPPP this can constitute **Non-Compliance**.

Please contact the undersigned engineer if there are any questions about this SWPPP or permit compliance.

Sincerely,

LANE ENGINEERS, INC.

Wa Vang, PE, QSD

SWPPP Table of Contents

Qualified SWPPP Developer Certification

- Amendment Log
- **Stormwater Pollution Prevention Plan**
- Appendix A General Permit (See Binder 2)
- Appendix B Permit Registration Documents (including Vicinity Map and Water Pollution Control Drawing)
- Appendix C SWPPP Amendment QSD Certifications
- **Appendix D Non Compliance Reports**
- Appendix E Submitted Changes of Information
- **Appendix F Construction Schedule**
- Appendix G Pollutant List
- Appendix H CASQA Stormwater BMP Handbook: Construction Fact Sheets
- **Appendix I Construction Inspection Report Forms**
- **Appendix J Training Forms**
- **Appendix K Responsible Parties**
- **Appendix L Contractors and Subcontractors**
- Appendix M Example Storm Event Monitoring Forms
- Appendix N Attachment D: Traditional Construction Risk Level Requirements

Qualified SWPPP Developer

Approval and Certification of the Stormwater Pollution Prevention Plan

Project Name:

New Classroom Wing for CHUSD – Coalinga, CA

Project Number/ID:

N/A

"This Stormwater Pollution Prevention Plan and its appendices were prepared under my direction to meet the requirements of the California Construction Stormwater General Permit (*Order No. 2022-0057-DWQ*). I certify that I am a Qualified SWPPP Developer in good standing as of the date signed below and will maintain up to date credentials for the duration of the project."

1 la l

QSD Signature

Wa Vang

QSD Name

PE, QSD

Title and Affiliation

wa@laneengineers.com

Email

03/18/2025

Date

22309

QSD Certificate Number

(559) 688-5263

Telephone Number

Amendment Log

Project Name: New Classroom Building at Sunset Elementary School– Coalinga, CA

Project Number/ID:

Amendment No.	Date	Brief Description of Amendment (include section and page number)	Prepared and Approved By
			Name: QSD#
			Name: QSD#
			Name: QSD#

The SWPPP will be revised when:

- There is a 2022 CGP violation (2022 CGP Section VI.Q.1);
- There is a reduction or increase in total disturbed acreage (2022 CGP Section III.F.2. and F.4);
- BMPs are not effective and are not resulting in a reduction or elimination of pollutants in stormwater discharges and authorized non-stormwater discharges (2022 CGP Section VI.Q.1 and Attachment E Section III.C.5);
- There is a change in the project duration that changes the project Risk Type (2022 CGP Section III.F.1);
- Dischargers with projects where all construction activities (including passive treatment, active treatment systems, and/or active equipment) will be suspended for 30 days or more (2022 CGP Section III.G);
- There is a change in construction or operations that may affect the discharge of pollutants to surface waters, groundwater(s), or a municipal separate storm sewer system (MS4) (2022 CGP Sections IV.O. and VI.Q.1); or

When deemed necessary by the QSD. The QSD has determined that the changes listed in Table 1-1 can be field determined by the QSP. All other changes will be made by the QSD as formal amendments to the SWPPP. Note that the 2022 CGP requires that the QSD "revise the SWPPP to address potential problems identified by visual inspections, sampling data, comments from a QSP, or their own site observations (2022 CGP Section V.C.2.).

SWPPP Amendment QSD Certifications are located in **Appendix C**.

Stormwater Pollution Prevention Plan

Section 1 SWPPP Requirements

1.1 INTRODUCTION

This Stormwater Pollution Prevention Plan (SWPPP) is designed to comply with California's *General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities (2022 CGP)*, State Water Resources Control Board (State Water Board) *Order No. 2022-0057-DWQ (NPDES No. CAS000002)* (**Appendix A**). This SWPPP has been prepared following the 2022 CGP SWPPP Template for Traditional Projects provided in the California Stormwater Quality Association (CASQA) Stormwater *Best Management Practice (BMP) Handbook: Construction* (CASQA 2023).

This project is considered a traditional construction project.

In accordance with the 2022 CGP, Section IV.O, this SWPPP is designed to address the following:

- Identification of all pollutants, their sources, and control mechanisms, including sources of sediment associated with all construction activities (e.g., sediment, paint, cement, stucco, cleaners, site erosion);
- Pollutant source assessments, including a list of potential pollutant sources and identification of site areas where additional BMPs are necessary to reduce or prevent pollutants in stormwater and authorized non-stormwater discharges, per the minimum requirements when developing the pollutant source assessment;
- Description of site-specific BMPs implemented to reduce or eliminate stormwater pollution;
- Where not otherwise required to be under a Regional Water Quality Control Board (Regional Water Board) permit, all non-stormwater discharges are identified and either eliminated, controlled, or treated;
- Site BMPs are effective and result in the reduction or elimination of pollutants in stormwater discharges and authorized non-stormwater discharges from construction activity to the Best Available Technology/Best Control Technology (BAT/BCT) standard; and;
- Stabilization BMPs are installed to reduce or eliminate pollutants after construction is completed are effective and maintained; and
- Calculations and design details, as well as BMP controls, are complete and correct.

The New Classrooms Wing at Sunset Elementary School project comprises approximately 1.36 acres. The Project is located at 985 Sunset Avenue, Coalinga, California. The property is owned by Coalinga-Huron Unified School District. The project's location is shown on the Site Maps in **Appendix B**.

1.2 **PERMIT REGISTRATION DOCUMENTS**

Required Permit Registration Documents (PRDs) shall be submitted to the State Water Board via the Stormwater Multi Application and Report Tracking System (SMARTS) by the LRP or DAR. The project-specific PRDs include (2022 CGP Section III.A):

- 1. Notice of Intent (NOI);
- 2. Risk Level Determination (Construction Site Sediment and Receiving Water Risk Determination);
- 3. Site Drawings and Map;
- 4. SWPPP;
- 5. Applicable plans, calculations, and other supporting documentation for compliance with the Phase I or Phase II municipal separate storm sewer system (MS4) post construction requirements or the post-construction standards of the 2022 CGP:
 - Attachment or web-source containing the applicable Phase I or Phase II MS4 post construction requirements;
 - The post construction plans and calculations submitted to or approved by the applicable Phase I or Phase II MS4; and/or
 - Post-construction water balance calculation;
- 6. Annual Fee per the current 23 California Code of Regulations Chapter 9 fee schedule for National Pollutant Discharge Elimination System (NPDES) stormwater permits; and
- 7. Signed Certification Statement (LRP Certification is provided electronically with SMARTS PRD submittal).

Site Maps can be found in **Appendix B**. A copy of the submitted PRDs shall also be kept in **Appendix B** along with the Waste Discharge Identification (WDID) confirmation.

1.3 SWPPP AVAILABILITY AND IMPLEMENTATION

The SWPPP will be available at the construction site during working hours while construction is occurring and shall be made available upon request by a federal, state, or municipal inspector. A current copy of the site-specific SWPPP and any site inspection reports required by the 2022 CGP may be kept in electronic format at the site so long as the information requested by a federal, state, or municipal inspector can be made available during an inspection. Legible maps in hard copy must be available at the site (2022 CGP Section IV.O.1.).

The SWPPP must be implemented at the appropriate level to protect water quality at all times throughout the life of the project. The SWPPP must remain on the site during construction activities, commencing with the initial mobilization and ending with the termination of coverage under the 2022 CGP.

1.4 SWPPP AMENDMENTS

SWPPP changes or amendments will be uploaded through SMARTS within 30 calendar days. The SWPPP will be revised when:

- If there is a 2022 CGP violation (2022 CGP Section VI.Q.1);
- There is a reduction or increase in total disturbed acreage (2022 CGP Section III.F.2 and F.4.);
- BMPs are not effective and are not resulting in a reduction or elimination of pollutants in stormwater discharges and authorized non-stormwater discharges (2022 CGP Section VI.Q.1 and Attachment D Section III.C.5);
- There is a change in the project duration that changes the project's risk level (2022 CGP Section III.F.1); or

• Dischargers with projects where all construction activities (including passive treatment, active treatment systems, and/or active equipment) will be suspended for 30 days or more (2022 CGP Section III.G.).

Additionally, the SWPPP will be amended when:

• There is a change in construction or operations that may affect the discharge of pollutants to surface waters, groundwater(s), or a municipal separate storm sewer system (MS4) (2022 CGP Sections IV.O. and VI.Q.1); or

When deemed necessary by the QSD. The QSD has determined that the changes listed in Table 1-1 can be field determined by the QSP. All other changes will be made by the QSD as formal amendments to the SWPPP. Note that the 2022 CGP requires that the QSD revise the SWPPP to address potential problems identified by visual inspections, sampling data, comments from a QSP, or their own site observations (2022 CGP Section V.C.2.).

The following items shall be included in each amendment:

- Who requested the amendment;
- The location of proposed change;
- The reason for change;
- The original BMP(s) proposed, if any;
- The new BMP(s) proposed; and
- QSD certification.

SWPPP amendments will be logged at the front of the SWPPP and SWPPP Amendment QSD certifications will be located in **Appendix C**. The SWPPP text will be revised, replaced and/or hand annotated as necessary to properly convey the amendment. SWPPP amendments must be made by a QSD. The following changes have been designated by the QSD as "to be field determined" and constitute minor changes that the QSP may implement based on field conditions.

Candidate changes for field location or determination by QSP ⁽¹⁾	Check changes that can be field located or field determined by QSP
Increase quantity of an Erosion or Sediment Control Measure	\checkmark
Relocate/add stockpiles or stored materials	\checkmark
Relocate or add toilets	\checkmark
Relocate vehicle storage and/or fueling locations	\checkmark
Relocate areas for waste storage	\checkmark
Relocate water storage and/or water transfer location	\checkmark
Changes to access points (entrance/exits)	\checkmark

Table 1-1 List of Changes to be Field Determined

Table 1-1	List of Changes to be Field Determined
	List of changes to be rield betermined

Candidate changes for field location or determination by QSP ⁽¹⁾	Check changes that can be field located or field determined by QSP
Change type or location of Erosion or Sediment Control Measure	\checkmark
Minor changes to schedule or phases	\checkmark
Changes in construction materials	\checkmark

(1) Any field changes not identified for field location or field determination by the QSP must be made as an amendment by the QSD.

1.5 RETENTION OF RECORDS

Paper or electronic records of documents required by this SWPPP will be retained for a minimum of three years from the date generated or date submitted, whichever is later. These records will be available at the Site until construction is complete. Records assisting in the determination of compliance with the 2022 CGP will be made available within a reasonable time to the Regional Water Board, State Water Board, or U.S. Environmental Protection Agency (EPA) upon request. Requests by the Regional Water Board for retention of records for a period longer than three years will be adhered to. It shall be the responsibility of the owner to retain all records once project construction is complete. RWQCB's may require records to be retained for longer periods.

1.6 **REPORTING**

Completed inspection checklists will be kept with the SWPPP on-site or electronically. The 2022 CGP requires that permittees prepare, certify, and electronically submit an Annual Report no later than September 1 of each year. Reporting requirements are identified in 2022 CGP Section VI.P. Annual reports will be filed in SMARTS and in accordance with information required by the online forms.

Planned changes in site construction activities that may result in non-compliance with the 2022 CGP are required to be provided in writing to the Regional Water Board and local stormwater agency in advance of the changes.

If a 2022 CGP discharge violation occurs, the QSP will immediately notify the LRP. The LRP will include information on the violation with the Annual Report. Corrective measures will be implemented immediately following identification of the discharge or written notice of non-compliance from the Regional Board. Discharges and corrective actions must be documented and include the following items:

- Risk Level 1 dischargers are not subject to Numeric Effluent Standards NEL's or NAL's (Attachment D.
- The date, time, location, nature of operation, and type of unauthorized discharge;
- The cause or nature of the notice or order;
- The BMPs deployed before the discharge event, or prior to receiving notice or order; and

• The date of deployment and type of BMPs deployed after the discharge event, or after receiving the notice or order, including additional measures installed or planned to reduce or prevent re-occurrence.

Include the results of all non-compliance events in **Appendix D**.

1.7 CHANGES TO PERMIT COVERAGE

The 2022 CGP allows for the reduction or increase of the total acreage covered under the 2022 CGP when: a portion of the project is complete and/or conditions for termination of coverage have been met; when ownership of a portion of the project is purchased by a different entity; or when new acreage is added to the project.

Modified PRDs will be filed electronically through a Change of Information (COI) within 30 days of a reduction or increase in total disturbed area if a change in permit-covered acreage is to be sought. The SWPPP will be modified appropriately and will be logged at the front of the SWPPP. SWPPP Amendments QSD Certifications will be located in **Appendix C**. COIs submitted electronically via SMARTS can be found in **Appendix E**.

1.8 NOTICE OF TERMINATION

A Notice of Termination (NOT) must be submitted electronically by the QSP via SMARTS to terminate coverage under the 2022 CGP. The QSP shall coordinate with the LRP or DAR to successfully terminate the SWPPP permit prior to project completion.

According to the requirements of 2022 CGP Section III.H.4., one of the following final stabilization methods will be used to satisfy final stabilization condition requirements:

70 percent final cover method supported by pre- and post-project photographs demonstrating stabilization.

RUSLE or RUSLE2 method with computation proof supported by pre- and post-project photographs demonstrating stabilization.

Custom method for which Regional Water Board approval has been obtained, supported by documentation required by the Regional Water Board and pre- and pos- project photographs demonstrating stabilization.

The Regional Water Board will consider a construction site complete when the conditions of the 2022 CGP Section III.H., have been met.

The QSP is required to submit the following in SMARTS:

- NOT SMARTS Form;
- QSP-prepared final NOT inspection which includes the QSP name and valid QSP certificate number;
- Final site map with photo orientation references;
- Photos demonstrating final stabilization and the applicable post-construction BMPs and/or low impact development; and
- A long-term maintenance plan, if applicable, for the post-construction stormwater runoff BMPs and/or low impact development features being implemented.

According to the 2022 CGP, the NOT will be automatically approved within 30 calendar days after the date the NOT was submitted, unless, within the 30 calendar days the Regional Water

Board notifies the discharger through SMARTS that the Notice of Termination has been denied, returned, or accepted for review (2022 CGP Section III.H.7).

Note: If an Annual Report has not been filed in the current reporting year, an Annual Report will need to be submitted prior to the NOT.

Section 2 Project Information

2.1 PROJECT AND SITE DESCRIPTION

Project Location: 985 Sunset Avenue, Coalinga, CA Existing Site Conditions: Developed School site with Buildings, Parking Lot & Play fields Existing Land Use: Developed School site with Buildings, Parking Lot & Play fields Soils & Geologic Condition: See referenced soils report Depth to Groundwater: See referenced soils report Reference Soils Report: See Geotechnical Report by Krazan& Associates, In (Project No. 052-24041) Proposed Drainage Pattern: Site is graded to City Storm Drain System Receiving Water: N/A Watershed Description: None Description of Discharge Locations: Drains to City Storm Drain Basin Environmentally Sensitive Areas: None Description of Construction Activities: New Classroom Building and Parking Lot Total Disturbed Surface Area: 1.36 Acres Typical Rainy Season: October 1st to April 30th

Site maps showing existing topography, proposed drainage patterns, discharge locations and BMP implementation are located in **Appendix B**.

2.2 STORMWATER RUN-ON FROM OFFSITE AREAS

The General Permit requires that the SWPPP address calculations and design details as well as BMP controls for site run-on. This section of SWPPP identifies and provides estimates of any anticipated locations of project run-on. BMP's to control run-on are described here and are shown on the site map in **Appendix B**.

Site Run-On Source & Description: None Site Run-On quantities: None Description of BMP's used: Not Applicable

2.3 FINDINGS OF THE CONSTRUCTION SITE SEDIMENT AND RECEIVING WATER RISK DETERMINATION

This section summarizes the assumptions and input parameters and findings of the sediment and receiving water risk assessment, including the resulting site risk level from the Site Risk Determination. The sediment risk level was determined by the GIS Map, the site specific option, or from values populated by SMARTS.

Rainfall/Runoff, RUSLE R: 21.52

Soil Erodibility, K: 0.43 Length & Steepness of Slope, LS Factors: 0.41 Overall Predicted Sediment Loss from Project: 3.76 tons/acre Sediment Risk: Low Receiving Water Risk: Low

Calculated Site Risk Level (Appendix B): Level 1

A summary of permit requirements for this Risk Level as are follows: Risk Level 1 – Dischargers are not subject to a numeric effluent standard. Comply with the requirements of Risk Level 1 of the 2022 CGP Attachment D.

2.4 CONSTRUCTION SCHEDULE

Construction project schedule is located in **Appendix F**. Anticipated start and end dates of construction as well as phases of significant activities and work near drainages or receiving waters is noted. The LRP shall contact the QSD if the schedule changes during construction to address potential impact to the SWPPP.

2.5 POTENTIAL CONSTRUCTION ACTIVITY AND POLLUTANT SOURCES

Construction materials that will be used on activities to be performed that have the potential to contribute pollutants other than sediment to stormwater runoff will be listed in **Appendix G**. This information is required by the General Permit Section IV.0.2.b.

2.6 IDENTIFICATION OF NON-STORMWATER DISCHARGES

Identify non-stormwater discharges that apply to the site. The General Permit requires that dischargers identify all non-stormwater discharges (where not otherwise required to be under a Regional Water Quality permit) and that discharges be eliminated, controlled, or treated. Locations will be noted on the site plan.

Section 3 Best Management Practices

3.1 SCHEDULE FOR BMP IMPLEMENTATION

This section identifies a schedule for deployment of BMPs. BMPs must be implemented, modified, and maintained to reflect the phase of construction and the weather conditions. In order to be effective, some BMPs must be installed before the site is disturbed to provide protection during grading operations or to reduce or minimize pollution from historic areas of contamination during construction. Listed below is a BMP deployment schedule:

EC – Erosion Control:

EC-1 Scheduling: Implemented throughout life of project

EC-2 Preservation of Existing Vegetation: Implement throughout construction

EC-3 to EC-8: It shall be the option of the Owner coordinating with the QSP on which soil stabilization method to use. The QSP will be responsible for working with the Owner and the contractors to use the appropriate BMP that will minimize disruption of the construction activities. Risk Level 1 dischargers must provide effective soil cover for inactive areas and all finished slopes, open space, utility backfill, and completed lots. Inactive areas of construction are areas of construction activity that have been disturbed and are not scheduled to be redisturbed for at least 14 days.

EC-10 Velocity Dissipation Devices: Deployed where noted on the site map

SE – Sediment Control:

SE-1 Silt Fence: Deployed as noted on the site map.

SE-5 Fiber Rolls: Deployed as noted on the site map

SE-6 Gravel Bag Berm: Deployed as noted on the site map

SE-7 Street Sweeping and Vacuuming: Implement throughout construction

SE-8 Sandbag Barrier: Deploy as noted on the site map SE-10 Storm Drain Inlet Protection: Deploy as noted on the site map

TC – Tracking Control:

TC-1 Stabilized Construction Entrance/Exit: Construct as noted and shown on the site map and maintain throughout construction

WE – Wind Erosion Control

WE-1 Wind Erosion Control: Implemented throughout construction

NS – Non-Stormwater Management Control

NS-1 Water Conservation Practices: Implement throughout construction NS-3 Paving and Grinding Operations: Implement during these operations NS-6 Illicit Connection/Discharge: Implement throughout construction NS-7 Potable Water/Irrigation: Implement as appropriate NS-8 Vehicle and Equipment Cleaning: Implement throughout construction NS-9 Vehicle and Equipment Fueling NS-10 Vehicle Equipment Maintenance NS-12 Concrete Curing: Implement during concrete construction NS-13 Concrete Finishing: Implement during concrete construction

WM - Waste Management and Materials Pollution Control

The following BMPs will be implement throughout the entire life of the construction project: WM-1 Material Delivery and Storage

WM-2 Material Use

WM-3 Stockpile Management

WM-4 Spill Prevention and Control

WM-5 Solid Waste Management

WM-6 Hazardous Waste Management

WM-7 Contaminated Soil Management

WM-8 Concrete Waste Management: Implement as noted on the site map

WM-9 Sanitary/Septic Waste Management, Contractor shall stake down all portable toilets used on the site to prevent them from being knocked or blown over

3.2 EROSION AND SEDIMENT CONTROL

Erosion and Sediment control BMPs are required to meet the General Permit requirement of providing site BMPs that are effective and result in the reduction or elimination of sediment related pollutants in stormwater discharges and authorized non-stormwater discharges from construction activity to the BAT/BCT standard (Section IV.O.1). The General Permit additionally requires that SWPPPs be designed to address stabilization BMPs installed to reduce or eliminate pollutants after construction (Section IV.O.1).

BMPs for Erosion Control, Sediment Control, Wind Erosion Control & Tracking Control and drainage control will be installed that meet the minimum requirements for each site risk level category of the General Permit to prevent pollution associated with construction activities.

All BMP references in this SWPPP refer to the CASQA Construction Handbook unless noted otherwise in the plan. BMP locations will be noted on the BMP site map in **Appendix B**. BMP fact sheets are included in **Appendix H**. See SWPPP Section 3.1 for a list of BMPs expected to be used with this project.

3.3 NON-STORMWATER CONTROLS AND WASTE AND MATERIALS MANAGEMENT

BMPs for non-stormwater dischargers will be required to effectively reduce pollutants associated with material storage, material use, waste management, and reduce/properly manage "non-stormwater" that is used or generated on site. The General Permit requires that SWPPPs be designed to address the following objective: to identify all non-stormwater discharges (where not otherwise required to be under a Regional Water Quality permit) and that discharges be eliminated, controlled, or treated.

Non-stormwater BMPs that meet the minimum requirements for each site risk level and otherwise prevent pollution associated with construction activities will be installed. These BMPs will be identified on the BMP site map in **Appendix B**. BMP fact sheets are included in **Appendix H**. See SWPPP Section 3.1 for a list of BMPs expected to be used with this project.

The QSP shall be responsible for providing equipment and materials for cleanup of spills on the site (spill kit). All spills and leaks shall be cleaned up immediately and disposed of properly.

3.4 POST CONSTRUCTION STORMWATER MANAGEMENT MEASURES

This project is located in an area subject to a Phase II MS4 permit approved Stormwater Management Plan and is, therefore, exempt from the runoff reduction requirements in the Construction General Permit. The QSP is not responsible for the implementation of postconstruction BMPs, or any other maintenance after permit coverage has been terminated

Section 4 BMP Inspection and Maintenance

4.1 BMP INSPECTION AND MAINTENANCE

BMP inspection and maintenance will be performed in accordance with the requirements of the General Permit. A blank inspection form is located in **Appendix I**. Completed inspection forms should be included in **Appendix I** or in an accompanying file/binder that is referenced in the SWPPP and readily accessible on site.

The General Permit requires (Attachment D; Section IV.A) that completed inspection checklists be maintained with the on-site SWPPP or electronically. In general the information required to be recorded for BMP/facility inspections includes: the date of the inspection, weather information, site information, observations, descriptions of the inspected BMPs and any deficiencies, and the corrective actions that were taken such as BMPs that were fixed or additional BMPs that were implemented, and the inspectors name, title, and signature (Attachment D; Section III.C.7).

The required frequency of BMP inspections depends on the type of BMP that is implemented. The General Permit (Attachment D; Section III.C) requires routine weekly inspections and daily inspections during rain events of all BMPs (for all Risk Categories); however, some BMPs (e.g. tracking controls) may require daily monitoring. BMPs must be maintained regularly based on permit-required inspections and observations during the course of normal construction activities. The General Permit requires dischargers to begin implementing corrective actions within 72 hours for deficiencies identified during inspections (Attachment D; Section II.J). SWPPP amendments should be prepared by the QSD if warranted by the problem encountered and corrective action required.

Section 5 Training

The General Permit requires (Section V) that all elements of the SWPPP be developed by a Qualified SWPPP Developer (QSD) and implemented by a Qualified SWPPP Practitioner (QSP). The QSP may delegate tasks to trained employees provided adequate supervision and oversight is provided. Personnel at the site shall receive training appropriate for individual roles and responsibilities on the project. Appropriate personnel shall receive training on SWPPP implementation, BMP inspection and maintenance, and record keeping. Document all training activities (formal and informal) and retain a record of training activities in **Appendix J**. Training documentation must also be submitted in the Annual Report.

Section 6 Responsible Parties and Operators

6.1 RESPONSIBLE PARTIES

The General Permit requires that the name of any "**Duly Authorized Representative**" be listed in the SWPPP, and a copy of the written agreement or other mechanism that provides this authority from the LRP be provided in the SWPPP.

A list of authorized representatives is included in **Appendix K** along with project site personnel who will be responsible for SWPPP activities, including the QSD and QSP. This list should include the names of the individuals granted authority to sign permit-related documents.

Include copies of the written authorizations for duly authorized representatives in the appendix. The appendix or list should include the name and contact information for the individual, their role on the project, date of training, and date of recorded entry as well as a copy of training certificates or other verification of training.

QSD(s) identified for the project are identified in **Appendix K**. The QSD will have primary responsibility for assessing how construction activities will affect sediment transport, erosion, and other discharges of pollutants in stormwater runoff throughout the project. The QSD is required to revise the SWPPP to address potential problems identified by visual inspections, sampling data, comments from a QSP, or their own site observations. The QSD is required to perform the following on-site visual inspections:

- Within 30 days of construction activities commencing on site;
- Within 30 days when a new QSD is assigned to the project;
- Twice annually, once August through October and once January through March;
- Within 14 calendar days after a numeric action level exceedance; and

• Within the time period requested in writing from Regional Water Board staff. QSPs and QSP Delegates identified for the project are identified in **Appendix K**. The QSP will have primary responsibility and significant authority for the implementation, maintenance, and inspection/monitoring of SWPPP requirements. The QSP will be available at all times throughout the duration of the project.

Duties of the QSP include but are not limited to:

- Implementing all elements of the 2022 CGP and SWPPP, including, but not limited to:
 - Performing the following on-site visual inspections:

- One inspection per calendar month; other weekly inspections in the month can be delegated to a trained QSP Delegate under the specific direction of the QSP.
- Within 72 hours prior to a forecasted qualifying precipitation event, to inspect any areas of concern and to verify the status of any deficient BMPs, or other identified issues at the site. If extended forecast precipitation data (greater than 72 hours) is available from the *National Weather Service*, then the Pre-Precipitation Event inspection may be done up to 120 hours in advance.
- Within 14 days after a NAL exceedance, the QSP shall visually inspect the drainage area for exceedance and document any areas of concern.
- Prior to the submittal for the NOT or COI (for acreage changes) for all or part of the site.
- Ensuring that all BMPs are implemented, inspected, and properly maintained;
- Ensure that the SMARTS generated WDID Number Notification form is posted onsite, in a location viewable by the public or readily available upon request, and the dates are correct and match the dates listed in SMARTS.
- Implementing non-stormwater management, and materials and waste management activities such as: monitoring discharges; general Site clean-up; vehicle and equipment cleaning, fueling and maintenance; spill control; ensuring that no materials other than stormwater are discharged in quantities which will have an adverse effect on receiving waters or storm drain systems, etc.;
- Ensuring elimination of unauthorized discharges.
- The QSPs shall be assigned authority by the LRP to mobilize crews in order to make immediate repairs to the control measures.
- Coordinate with the Contractor(s) to assure the necessary corrections/repairs are made immediately and that the project complies with the SWPPP, the 2022 CGP, and approved plans at all times.
- Notifying the LRP or Duly Authorized Representative immediately of off-site discharges or other non-compliance events.
- Providing foundation and site-specific training to QSP Delegates and overseeing QSP Delegate work. Tasks that may be delegated to appropriately trained QSP-delegates include:
 - Performing non-stormwater and stormwater visual observations and inspections;
 - o Performing stormwater sampling and analysis, as required; and
 - Performing routine inspections and observations.

	Weekly BMP and NSW	Pre-QPE	Daily-QPE Visual Inspections	Post-QPE Visual Inspections	Post NAL Exceedances	Monthly BMP and NSW	NOT
QSP	X	X	X	X	X	X	X
QSP Delegate	X		X	X			

Table 6-1. QSP and QSP Delegate Authorized Inspections

6.2 CONTRACTOR LIST

The General Permit requires that the SWPPP include a list of names of all contractors, subcontractors, and individuals who will be directed by the QSP. Upon selection of a trained and certified QSP it will be the responsibility of the QSP to complete this list and include it in **Appendix L**. The list is required to include telephone numbers and work addresses and the specific areas of responsibility of each subcontractor and emergency contact numbers.

Section 7 Construction Site Monitoring Program

7.1 Purpose

The General Permit (Section IV.O.2.i) requires that a written site specific Construction Site Monitoring Program (CSMP) be developed by each discharger prior to the commencement of construction activities, and be revised as necessary to reflect project revisions and that the CSMP be included with the SWPPP. Section 7 of this SWPPP is the CSMP that will be used for this construction project categorized as a Risk Level 1 site. All Monitoring and Reporting requirements will be in accordance with General Permit Attachment D; which is included in **Appendix N** for reference. See SWPPP Section 2.1 for a description of the project site's watershed, drainage patterns, and all site discharge locations. See the site map located in **Appendix B** for discharge locations and all monitoring locations as applicable. See SWPPP Section 2.3 for a brief summary NAL/NEL numeric effluent limits.

7.2 Applicability of Permit Requirements

General Permit monitoring requirements for stormwater and non-stormwater visual observations; stormwater and non-stormwater sample collection; and receiving water monitoring are described in General Permit Attachment D; which is included in **Appendix N.** This project has been determined to be a Risk Level 1 project. The 2022 CGP identifies the following types of monitoring as being applicable for a Risk 1 project.

Risk Level 1

- Visual inspections of BMPs;
- Visual monitoring of the site related to qualifying precipitation events;
- Visual monitoring of the site for non-stormwater discharges;

- Sampling and analysis of construction site runoff for non-visible pollutants [including TMDL pollutants] identified during the pollutant source assessments when applicable; and
- Sampling and analysis of construction site runoff as required by the Regional Water Board when applicable.

7.3. Weather and Precipitation Event Tracking

Visual monitoring and inspections requirements of the 2022 CGP are triggered by a Qualifying Precipitation Event. The 2022 CGP defines a Qualifying Precipitation Event as any weather pattern that is forecast to have a 50 percent or greater Probability of Precipitation (PoP) and a Quantitative Precipitation Forecast (QPF) of 0.5 inches or more within a 24-hour period. The event begins with the 24-hour period when 0.5 inches has been forecast and continues on subsequent 24-hour periods when 0.25 inches of precipitation or more is forecast.

7.4 Monitoring Locations

Risk Level 1 projects are only required to collect water quality samples if there is a BMP breach, malfunction, leakage, or spill. Water quality samples should be taken for non-pollutants that may have been discharged from the site as identified in the site pollutant source assessment. Monitoring and testing of water quality samples shall be in accordance with General Permit Attachment D; attached in **Appendix N** for reference.

7.5 Safety and Monitoring Exemptions

All sampling and visual inspection shall be performed in a safe manner at the direction of the QSP. The QSP shall be responsible for applying the appropriate safety measures if it becomes necessary to perform inspections/obtain samples in particularly inclement weather.

7.6 Visual Monitoring

Per Section III.B.2. of Attachment D in the 2022 CGP, "For inactive projects, dischargers may reduce the visual inspection frequency and suspend sampling per Section III.G of the 2022 CGP. Dischargers shall provide an explanation with supporting information for all missed visual inspections or sampling required by this Attachment, to be included in the Annual Report." Visual monitoring includes observations and inspections. Inspections of BMPs are required to identify and record BMPs that need maintenance to operate effectively, that have failed, or that could fail to operate as intended. Visual observations of the site are required to observe storm water drainage areas to identify any spills, leaks, or uncontrolled pollutant sources.

The General Permit Attachment D; attached in **Appendix N** identifies the required frequency of visual observations and inspections. Example template field logs are provided in **Appendix M** for inspections. It shall be the responsibility of the QSP to modify the attached forms as necessary to reflect current site conditions. A description of the visual observation locations, visual observation procedures, and visual observation follow-up and tracking procedures shall be included in the records. All completed inspection logs should be kept in **Appendix M**.

Exemptions:

Risk Level 1 dischargers are not required to conduct visual observations/inspections during dangerous weather conditions such as flooding and electrical storms or outside of scheduled site business hours. If no required observations are collected due to these exceptions, Risk Level 1 dischargers shall include an explanation in their SWPPP and in the Annual Report documenting why the visual observations/inspections were not conducted.

7.7 Water Quality Sampling and Analysis

The level of detail and the amount of information provided in this section will depend upon the risk level determined for the site as part of the PRDs. See General Permit Attachment D for more details on sampling and analysis.

Risk Level 1 Sites are required to monitor runoff for non-visible pollutants in the event of a BMP failure, breach, or spill. An area unaffected by the failure, breach, or spill must also be sampled to serve as the basis of comparison.

7.8 Watershed Monitoring Option

This option is not being pursued with this project.

7.9 Quality Assurance and Quality Control

It shall be the responsibility of the QSP to document all numeric effluent limit and other violations and submit this information to the SMARTS system as required by the General Permit. Copies of all violation records and corrective measures shall be attached to the SWPPP.

7.10 Reporting Requirements and Records Retention

Risk Level 1 dischargers shall retain records of all storm water monitoring information and copies of all reports (including Annual Reports and Violations) for a period of at least three years. Risk Level 1 dischargers shall retain all records on-site while construction is ongoing. These records include all of the information listed under General Permit Attachment D; attached in **Appendix N** for reference.

References

SWRCB (State Water Resources Control Board). (2022). Order 2022-0057-DWQ, NPDES General Permit No. CAS000002: Stormwater Discharges Associated with Construction and Land Disturbing Activities. Available online at:

https://www.waterboards.ca.gov/water_issues/programs/stormwater/construction/general_permit_reissuance.html.

CASQA 2023. Stormwater BMP Handbook: Construction. Available online at: www.casqa.org

APPENDIX A BINDER 2 CONSTRUCTION GENERAL PERMIT

APPENDIX B PERMIT REGISTRATION DOCUMENTS (PRDs)

An official website of the United States government

MENU

National Pollutant Discharge Elimination System (NPDES)

Rainfall Erosivity Factor Calculator for Small Construction

Introduction

EPA's stormwater regulations allow NPDES permitting authorities to waive NPDES permitting requirements for stormwater discharges from small construction sites if:

- the construction site disturbs less than five acres, and
- the rainfall erosivity factor ("R" in the revised universal soil loss equation, or RUSLE) value is less than five during the period of construction activity.

If your small construction project is located in an area where EPA is the permitting authority and your R factor is less than five, you qualify for a low erosivity waiver (LEW) from NPDES stormwater permitting. If your small construction project does not qualify for a waiver, then NPDES stormwater permit coverage is required. Follow the steps below to calculate your R-Factor.

LEW certifications are submitted through the NPDES eReporting Tool or "CGP-NeT". Several states that are authorized to implement the NPDES permitting program also accept LEWs. Check with your state NPDES permitting authority for more information.

• Submit your LEW through EPA's eReporting Tool https://www.epa.gov/npdes/submitting-notice-intent-noi-notice-termination-not-or-low-erosivity-waiver-lew-under

TOTAL EPA R-FACTOR = 7.51 + 14.01 = 21.52

- List of states, Indian country, and territories where EPA is the permitting authority (pdf) https://www.epa.gov/system/files/documents/2022-01/2022-cgp-final-appendix-b-areas-of-permit-cover.pdf>
- Construction Rainfall Erosivity Waiver Fact Sheet https://www.epa.gov/npdes/construction-rainfall-erosivity-waiver-fact-sheet
- Small Construction Waivers and Instructions (pdf)
 https://www.epa.gov/system/files/documents/2022-01/2022-cgp-final-appendix-c-waivers.pdf

The R-factor calculation can also be integrated directly into custom applications using the R-Factor web service https://epa.gov/api-docs/.

Steps to Calculate an R Factor for your Small Construction Project

Select the estimated start and end dates of construction by clicking the calendar icons below and using the dropdown calendar. The period of construction activity begins at initial earth disturbance and ends with final stabilization.

Start Date:	End Date:		
05/26/2025	12/31/2025		

2 Locate your small construction project by entering the address in the search box or by clicking on the map.

Location:

36.145528, -120.364838

Search

+

3 Click the "Calculate R Factor" button below.

Calculate R Factor

Facility Information

Start Date: 05/26/2025	Latitude: 36.1455
End Date: 12/31/2025	Longitude: -120.3648

Calculation Results

Rainfall erosivity factor (R Factor) = 7.51

A rainfall erosivity factor of 5.0 or greater has been calculated for your site's period of construction.

You do NOT qualify for a waiver from NPDES permitting requirements and must seek Construction General Permit (CGP) coverage. If you are located in an area where EPA is the permitting authority (pdf)

<https://www.epa.gov/system/files/documents/2022-01/2022-cgp-final-appendix-b-areas-of-permit-

An official website of the United States government

MENU

National Pollutant Discharge Elimination System (NPDES)

Rainfall Erosivity Factor Calculator for Small Construction

Introduction

EPA's stormwater regulations allow NPDES permitting authorities to waive NPDES permitting requirements for stormwater discharges from small construction sites if:

- the construction site disturbs less than five acres, and
- the rainfall erosivity factor ("R" in the revised universal soil loss equation, or RUSLE) value is less than five during the period of construction activity.

If your small construction project is located in an area where EPA is the permitting authority and your R factor is less than five, you qualify for a low erosivity waiver (LEW) from NPDES stormwater permitting. If your small construction project does not qualify for a waiver, then NPDES stormwater permit coverage is required. Follow the steps below to calculate your R-Factor.

LEW certifications are submitted through the NPDES eReporting Tool or "CGP-NeT". Several states that are authorized to implement the NPDES permitting program also accept LEWs. Check with your state NPDES permitting authority for more information.

• Submit your LEW through EPA's eReporting Tool https://www.epa.gov/npdes/submitting-notice-intent-noi-notice-termination-not-or-low-erosivity-waiver-lew-under
- List of states, Indian country, and territories where EPA is the permitting authority (pdf) https://www.epa.gov/system/files/documents/2022-01/2022-cgp-final-appendix-b-areas-of-permit-cover.pdf>
- Construction Rainfall Erosivity Waiver Fact Sheet https://www.epa.gov/npdes/construction-rainfall-erosivity-waiver-fact-sheet
- Small Construction Waivers and Instructions (pdf)
 https://www.epa.gov/system/files/documents/2022-01/2022-cgp-final-appendix-c-waivers.pdf

The R-factor calculation can also be integrated directly into custom applications using the R-Factor web service https://epa.gov/api-docs/.

Steps to Calculate an R Factor for your Small Construction Project

Select the estimated start and end dates of construction by clicking the calendar icons below and using the dropdown calendar. The period of construction activity begins at initial earth disturbance and ends with final stabilization.

Start Date:	End Date:
01/01/2026	10/31/2026

2 Locate your small construction project by entering the address in the search box or by clicking on the map.

Location:

36.145528, -120.364838

Search

+

3 Click the "Calculate R Factor" button below.

Calculate R Factor

Facility Information

Start Date: 01/01/2026	Latitude: 36.1455
End Date: 10/31/2026	Longitude: -120.3648

Calculation Results

Rainfall erosivity factor (R Factor) = 14.01

A rainfall erosivity factor of 5.0 or greater has been calculated for your site's period of construction.

You do NOT qualify for a waiver from NPDES permitting requirements and must seek Construction General Permit (CGP) coverage. If you are located in an area where EPA is the permitting authority (pdf)

<https://www.epa.gov/system/files/documents/2022-01/2022-cgp-final-appendix-b-areas-of-permit-

Start a New Application	Active Applications	File Reports	Account Management	Recertify Existing Application	s Documents Ready for Certification
Home > Risk					
Permit Type: Traditional:Con	struction - NOI Application I	D: 583157	Status: Not Submitted		
Owner Information	Sediment Risk	Receiving Water Risk	Combined Risk		
On-Site Contact Information	1. SEDIMENT RISK FAC	TOR CALCULATION			
Site Information	Instructions: Enter R, K	, and LS factor values. System	n will calculate watershed ero	sion estimates and segme	nt sediment risk factor.
Additional Site Information	A) R Factor Value: *(Wha	t's this?)		21.52	Erosivity Calculator Help
Risk	Ĵ			Populate K and LS using GIS lay	er data
TMDL	B) K Factor Value: (weigh	ted average, by area, for all site	e soils) *(What's this?)	0.43	
Post Construction	C) LS Factor: (weighted a	verage, by area, for all slopes)	*(What's this?)	0.41	
	Watershed Erosion Estim	ate (=R*K*LS) in tons/acre		3.76	
QSD Information	J	Project Sedime	nt Risk Factor: (What's this?)	Low	
Attachments	Save & Continue				
Billing Information	Fields marked with * are	mandatory fields.			
Certification	J				
Linked Users	\mathbf{D}				

© 2022 State of California. <u>Conditions of Use</u> <u>Privacy Policy</u>

Start a New Application	Active Applications	File Reports	Account Management	Recertify Existing Applications	Documents Ready for Certification
Home > Risk					
Permit Type: Traditional:Con	struction - NOI Application II	D: 583157	Status: Not Submitted		
Owner Information	Sediment Risk	Receiving Water Risk	Combined Risk		
On-Site Contact Information	2. RECEIVING WATER R	ISK FACTOR CALCULATION			
Site Information	Statewide Map of High Re	eceiving Water Risk Watersheds	2		
Additional Site Information	A. Watershed Characteris				
	A.1.(a) Does the distur	bed area discharge directly or in	ndirectly to a 303(d) listed waterb	ody impaired by sediment?	
Risk	J		OR		
TMDL	A.1.(b) Is the disturbed	area located within a sub-wate	rshed draining to a 303(d) listed v	waterbody impaired by sediment	?
Post Construction	<u>ן</u>		OR		
QSD Information	A.2. Is the disturbed an MIGRATORY?	ea located within a planning wa	tershed draining to a waterbody v	with designated beneficial uses o	of COLD, SPAWN AND
Attachments	Receiving Water Risk (and	swer to above questions): No	Populate Receiving Water Risk)	
Billing Information	Project Receiving Water F	Risk Factor: Low			
Certification	Save & Continue				
Linked Users	Fields marked with * are	mandatory fields.			

© 2022 State of California. Conditions of Use Privacy Policy

Start a New Application	Active Applications	File Reports		Account Management		Recertify Existing Applications	Documents Ready for Certification
Home > Risk							
Permit Type: Traditional:Construction - NOI Application ID: 583157 Status: Not Submitted							
Owner Information	Sediment Risk	Receiving Wa	ter Risk	Combined Risk			
On-Site Contact Information	3. COMBINED RISK LEVE	EL MATRIX					
Site Information	Ĵ		Sediment Risk				
Additional Site Information)	Low	Medium	High			
Risk	Receiving Low	Level1		Level2			
TMDL	Water Risk Hig	h	Level2	Level3			
Post Construction)			II			
QSD Information	Project Sediment Risk: Project Receiving Water R	Low					
Attachments	Project Combined Risk:	Level1					
Billing Information	Continue						
Certification	Fields marked with * are	mandatory fields.					
Linked Users)						

© 2022 State of California. <u>Conditions of Use</u> <u>Privacy Policy</u>

3/18/2025 11:28 AM

SCALE 1 INCH = 200 FT.

NOTES

- 1. PORTABLE TOILETS SHALL BE MANAGED IN ACCORDANCE WITH WM-9. THE QSP CAN UPDATE TOILET LOCATIONS AS NECESSARY ON THIS PLAN.
- 2. A MINIMUM OF 1 SPILL KIT SHALL BE LOCATED ON THE SITE TO CLEAN UP SPILLS RELATED TO ANY POLLUTANT SOURCES ON THE SITE. THE SPILL KIT SHALL CONTAIN EQUIPMENT AND MATERIALS FOR CLEAN UP.
- 3. THE QSP SHALL BE RESPONSIBLE FOR PERFORMING ALL VISUAL INSPECTIONS LISTED UNDER THE RISK LEVEL 1 REQUIREMENTS.
- 4. ALL BMP'S NOTED ABOVE SUCH AS WE-1 REFERENCE THE SHEETS FROM THE CASQA STORMWATER BMP HANDBOOK.
- 5. SEE THE SWPPP MANUAL FOR ALL ADDITIONAL INFORMATION.
- 6. MONITORING AND SAMPLING SHALL ONLY BECOME NECESSARY AS OUTLINED IN ATTACHMENT C (RISK LEVEL 1 REQUIREMENTS) OF THE CONSTRUCTION GENERAL PERMIT.
- 7. AT THE DISCRETION OF THE QSP, SILT FENCES, FIBER ROLLS, AND STRAW WATTLES MAY BE USED INTERCHANGEABLY.
- THE QSP SHALL BE RESPONSIBLE OF NOTIFYING THE QSD OF SIGNIFICANT DEVIATIONS FROM THIS DRAWING FOR WHICH AN AMENDMENT MAY BE WARRANTED.
- 9. INSTALLATION OF BMP'S SUCH AS FIBER ROLLS AND THE CONSTRUCTION ENTRANCE MAY BE DEFERRED UNTIL ROUGH GRADING IS COMPLETE.

KE	YNOTES	LEGEND	
1 2 3 4	INSTALL GRAVEL BAGS AROUND DRAIN INLET PER SE-10. USE MANUAL SWEEPING OR STREET SWEEPING AND VACUUMING TO MITIGATE TRACKOFF PER SE-7. CONSTRUCTION ENTRANCE SHALL BE CLEANED AT THE END OF EVERY WORK DAY OR IMMEDIATELY IF THE TRACKOUT/CARRY OUT EXCEEDS 50 FEET IN LENGTH. CONTRACTOR STAGING/STORAGE AREA FOR EQUIPMENT, MATERIALS AND RESTROOM FACILITIES. SEE BMP'S WM-1,2,3,4,5. CONSTRUCT VEHICLE CLEANING AREA PER NS-8 IF VEHICLES WILL BE CLEANED ONSITE. POSSIBLE CONCRETE WASTE MANAGEMENT AREA. USE PORTABLE CONCRETE WASHOUT AND COLLECTION SYSTEM BY CONCRETE WASHOUT SYSTEMS, INC. OR APPROVED EQUAL, IF NECESSARY. CONTACT JWT SITE MANAGEMENT FOR INFORMATION (559) 325-3827. SEE ADDITIONAL REQUIREMENTS IN WM-8, INSTALL GRAVEL AROUND THIS AREA, USE 1"-3" GRAVEL 3" DEEP MINIMUM. IT WILL NOT BE NECESSARY TO INSTALL CONCRETE WASTE MANAGEMENT AREA IF TRUCKS ARE SELF-CONTAINED AND CAPABLE OF WASHING OUT INTO THEMSELVES.	FR SF SD SD SD	FIBER ROLL PER SE-5 SILT FENCE PER SE-1 STORM DRAIN PIPE PROPOSED DRAINAGE EXISTING DRAINAGE PROJECT AREA SAMPLING/MONITORIN NECESSARY DUE TO /
5	DURING MASS GRADING ACTIVITIES WATER THE SITE AS NECESSARY TO LIMIT DUST PER WE-1. UPON COMPLETION OF GRADING ACTIVITIES RISK LEVEL 1 DISCHARGERS SHALL PROVIDE EFFECTIVE SOIL COVER FOR INACTIVE AREAS AND ALL FINISHED SLOPES, OPEN SPACE, UTILITY BACKFILL, AND COMPLETED LOTS THAT ARE NOT SCHEDULED TO BE RE-DISTURBED FOR AT LEAST 14 DAYS. FOR EFFECTIVE SOIL STABILIZATION SEE EC-3, 5, 6, AND 8. METHOD USED SHALL BE AT THE DISCRETION OF THE SITE QSP.		
6	INSTALL GRAVEL BAGS ON GUTTER PAN FOR SEDIMENT CONTROL PROTECTION. CONFIGURE AS NECESSARY TO PREVENT SEDIMENT FROM PASSING PAST GRAVEL BAG.	WATER	POLLU
7	INSTALL STABILIZED CONSTRUCTION ENTRANCE PER TC-1, 10' WIDE MIN. X 50' LONG. USE 3"-6" DIAMETER STONES 12" DEEP.	SUNS	ET ELEMENTA

CONTRACTOR BUILDING MATERIALS STORAGE AREA

8

WAT	ER	POL

2025 11:28 AM

Mg

SHEET 1 OF LANE JOB: 24040

EMENTARY SCHOOL - NEW CLASSROOM WING 985 SUNSET ST., COALINGA, CA

LUTION CONTROL DRAWING

SCALE 1 INCH = 60 FT.

CIV OF CAL

PLING/MONITORING LOCATION SHOULD THIS BECOME SSARY DUE TO A NON-VISIBLE POLLUTANT SPILL

ROFESSI R.C.E. 73146

Lane Project No: 24040

LANE ENGINEERS, INC. CIVIL•STRUCTURAL•SURVEYING 979 N. Blackstone Street Tulare, California 93274 559.688.5263 www.laneengineers.com

APPENDIX C SWPPP AMENDMENT LOG

SWPPP Amendment
No.

Project Name:	
Project Number:	
Qualif	ied SWPPP Developer's Certification of the
Stori	nwater Pollution Prevention Plan Amendment
"This Stormwater Pollution P	revention Plan and its appendices were prepared under my direction to

"This Stormwater Pollution Prevention Plan and its appendices were prepared under my direction to meet the requirements of the 2022 CGP (SWRCB Order No. 2022-0057-DWQ). I certify that I am a Qualified SWPPP Developer in good standing as of the date signed below."

QSD's Signature	Date
QSD Name	QSD Certificate Number
Title and Affiliation	Telephone
Address	Email

APPENDIX D NON COMPLIANCE REPORTS

(NAL/NEL EXCEEDANCE SITE EVALUATIONS ARE NOT REQUIRED FOR THIS PROJECT BECAUSE IT IS RISK LEVEL 1)

APPENDIX E SUBMITTED CHANGE OF INFORMATION(DUE TO CHANGE IN OWNERSHIP OR ACREAGE)

APPENDIX F CONSTRUCTION SCHEDULE

Approximate Construction Schedule:

Site Clearing and Rough Grading –05/26/2025 thru10/31/2025	
Underground Utilities –07/1/2025 thru10/31/2025	
Vertical Building Construction –09/01/2025 –06/30/2026	
Site Improvements Concrete, Concrete Paving and other Hardscape –07/01/2026	thru
Final Site Cleanup and Landscaping9/01/2026 thru Project Completion	

Note:

Construction schedule shown above is approximate. It shall be the responsibility of the QSP to insert the final construction schedule obtained from the general contractor upon completion of the bidding process.

APPENDIX G CONSTRUCTION ACTIVITIES, MATERIALS USED AND ASSOCIATED POLLUTANTS

Water Line Flushing: Chlorinated Water

Concrete & Masonry: Acid Wash, Curing Compounds, Concrete Rinse Water

Painting: Resins, Thinners, Paint Strippers, Solvents, Adhesives, Sealants

Cleaning: Detergents, Bleaches, Solvents

Landscaping: Pesticides/Herbicides, Fertilizers, Lime and Gypsum, Aluminum Sulfate, Sulfur

Treated Wood: Copper, Arsenic, Selenium

Soil Amendments & Dust Control: Lime/Gypsum, Plant gums, Magnesium Chloride, Calcium Chloride, Natural Brines, Lignosulfonates

Asphalt Paving: Asphaltic Emulsions associated with asphalt paving operations

General Construction Equipment: Vehicle Fluids including oils, grease, petroleum, and coolants

Note: See the attached Pollutant Testing Guidance Table.

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory		
	Hot Asphalt						
	Asphalt Emulsion	Yes - Rainbow Surface	Misusilly Observable . No Testing Demission				
Asphalt Products	Liquid Asphalt (tack coat)	or Brown Suspension	Visually Observable - No Testing Required				
·	Cold Mix						
	Crumb Rubber	Yes – Black, solid material	Visually	Observable - No Testing	Required		
	Asphalt Concrete (Any Type)	Yes - Rainbow Surface or Brown Suspension	Vieually Obcorvable No Locting Poguirod				
		No	pH Acidity Anions (acetic acid, phosphoric acid, sulfuric acid, nitric acid, hydrogen chloride)		EPA 150.1 (pH)		
	Acids				SM 2310B (Acidity)		
					EPA 300.0 (Anion)		
Cleaning Products	Bleaches	No	Residual Chlorine	Chlorine	SM 4500-CL G (Res. Chlorine)		
	Detergents	Yes - Foam	Visually	Observable - No Testing	Required		
	TSP	No	Phosphate	Phosphate	EPA 365.3 (Phosphate)		
	Solvents	No	voc	None	EPA 601/602 or EPA 624 (VOC)		
	Olivents		SVOC	None	EPA 625 (SVOC)		
Portland Concrete Cement & Masonry	Portland Cement (PCC)	Yes - Milky Liquid	Visually	Observable - No Testing	Required		
Products	Masonry products	No	рН	pH Meter	EPA 150.1 (pH)		

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory	
			Alkalinity	Alkalinity or Acidity Test Kit	SM 2320 (Alkalinity)	
	Sealant (Methyl	No	Methyl Methacrylate		EPA 625 (SVOC)	
	Methacrylate - MMA)	NO	Cobalt	None		
			Zinc		EPA 200.8 (Metal)	
	Incinerator Bottom Ash Bottom Ash Steel Slag Foundry Sand Fly Ash Municipal Solid Waste	No	Aluminum Calcium Vanadium Zinc	Calcium Test	EPA 200.8 (Metal) EPA 200.7 (Calcium)	
	Mortar	Yes - Milky Liquid	Visually	ually Observable - No Testing Required		
	Concrete Rinse Water	Yes - Milky Liquid	Visually	Visually Observable - No Testing Required		
	Non-Pigmented Curing Compounds		Acidity	pH Meter Alkalinity or Acidity Test Kit	SM 2310B (Acidity)	
			Alkalinity		SM 2320 (Alkalinity)	
			рН		EPA 150.1 (pH)	
			VOC		EPA 601/602 or EPA 624 (VOC)	
			SVOC		EPA 625 (SVOC)	
Landscaping and Other Products			Aluminum		EPA 200.8 (Metal)	
	Aluminum Sulfate	Aluminum Sulfate No	No	TDS TDS Meter Sulfate	TDS Meter Sulfate	EPA 160.1 (TDS)
			Sulfate		EPA 300.0 (Sulfate)	

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory	
	Sulfur-Elemental	No	Sulfate	Sulfate	EPA 300.0 (Sulfate)	
			Nitrate	Nitrate	EPA 300.0 (Nitrate)	
	Fertilizers-Inorganic ⁴	No	Phosphate	Phosphate	EPA 365.3 (Phosphate)	
	Fertilizers-morganic	INO	Organic Nitrogen	None	EPA 351.3 (TKN)	
			Potassium	None	EPA 200.8 (Metal)	
			TOC		EPA 415.1 (TOC)	
	Fertilizers-Organic	No	Nitrate	- Nitrate	EPA 300.0 (Nitrate)	
			Organic Nitrogen		EPA 351.3 (TKN)	
			COD		EPA 410.4 (COD)	
	Natural Earth (Sand, Gravel, and Topsoil)	Yes - Cloudiness and turbidity	Visually	Visually Observable - No Testing Required		
	Herbicide		Herbicide	None	Check lab for specific	
	Pesticide	No	Pesticide	None	herbicide or pesticide	
	Lime	NO	Alkalinity	pH Meter Alkalinity or Acidity Test	SM 2320 (Alkalinity)	
	Line	рН	Kit	EPA 150.1 (pH)		
Painting Products	Paint	Yes	Visually Observable - No Testing Required			
	Paint Strippers	No	voc	None	EPA 601/602 or EPA 624 (VOC)	
			SVOC	None	EPA 625 (SVOC)	
	Resins	No	COD	None	EPA 410.4 (COD)	

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory
			SVOC		EPA 625 (SVOC)
	Sealants	No	COD	None	EPA 410.4 (COD)
			COD		EPA 410.4 (COD)
	Solvents	No	VOC	None	EPA 601/602 or EPA 624 (VOC)
			SVOC		EPA 625 (SVOC)
			COD		EPA 410.4 (COD)
	Lacquers, Varnish, Enamels, and Turpentine	No	VOC	None	EPA 601/602 or EPA 624 (VOC)
				SVOC	
	Thinners	No	VOC	None	EPA 601/602 or EPA 624 (VOC)
	Thinkers		COD	None	EPA 410.4 (COD)
Portable Toilet Waste Products	Portable Toilet Waste	Yes	Visually Observable - No Testing Required		
	Aerially Deposited Lead ³	No	Lead	None	EPA 200.8 (Metal)
Contaminated Soil	Petroleum	Yes – Rainbow Surface Sheen and Odor	Visually	Observable - No Testing F	Required
	Mining or Industrial Waste, etc.	No	Contaminant Specific	Contaminant Specific – Check with laboratory	Contaminant Specific – Check with laboratory

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory
Line Flushing Products	Chlorinated Water	No	Total chlorine	Chlorine	SM 4500-CL G (Res. Chlorine)
			COD	None	EPA 410.4 (COD)
Adhesives	Adhesives	No	Phenols	Phenol	EPA 420.1 (Phenol)
			SVOC	None	EPA 625 (SVOC)
			Chloride	Chloride	EPA 300.0 (Chloride)
Dust Palliative Products	Salts (Magnesium Chloride, Calcium Chloride, and	No	TDS	TDS Meter	EPA 160.1 (TDS)
	Natural Brines)		Cations (Sodium, Magnesium, Calcium)	None	EPA 200.7 (Cations)
	Antifreeze and Other Vehicle Fluids	Yes - Colored Liquid	Visually Observable - No Testing Required		
			Sulfuric Acid	None	EPA 300.0 (Sulfate)
Vehicle	Batteries	No	Lead	None	EPA 200.8 (Metal)
			рН	pH Meter Alkalinity or Acidity Test Kit	EPA 150.1 (pH)
	Fuels, Oils, Lubricants	Yes - Rainbow Surface Sheen and Odor	Visually Observable - No Testing Required		Required
Soil			Organic Nitrogen	None	EPA 351.3 (TKN)
Amendment/Stabilization Products			BOD	None	EPA 405.1 (BOD)
			COD	None	EPA 410.4 (COD)
	Polymer/Copolymer ^{6,7}	No	DOC	None	EPA 415.1 (DOC)
			Nitrate	Nitrate	EPA 300.0 (Nitrate)
			Sulfate	Sulfate	EPA 300.0 (Sulfate)
			Nickel	None	EPA 200.8 (Metal)

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory
	Straw/Mulch	Yes - Solids	Visually Observable - No Testing Required		
	Lignin Sulfonate	No	Alkalinity	Alkalinity	SM 2320 (Alkalinity)
	Lightin Sullohate	NO	TDS	TDS Meter	EPA 160.1 (TDS)
	Psyllium	No	COD	None	EPA 410.4 (COD)
	r Symun	NO	тос	None	EPA 415.1 (TOC)
			COD		EPA 410.4 (COD)
	Guar/Plant Gums	No	тос	None	EPA 415.1 (TOC)
			Nickel		EPA 200.8 (Metal)
	Gypsum	No	рН	pH Meter Alkalinity or Acidity Test Kit	EPA 150.1 (pH)
			Calcium	Calcium	EPA 200.7 (Calcium)
			Sulfate	Sulfate	EPA 300.0 (Sulfate)
			Aluminum	None	EPA 200.8 (Metal)
			Barium		
			Manganese		
			Vanadium		
Treated Wood Products	Ammoniacal-Copper-Zinc-		Arsenic		
	Arsenate (ACZA) Copper-Chromium-Arsenic (CCA)	ic No	Total Chromium	Total Chromium	EPA 200.8 (Metal)
			Copper		
	Ammoniacal-Copper- Arsenate (ACA) Copper Naphthenate		Zinc		

Category	Construction Site Material	Visually Observable?	Pollutant Indicators ²	Suggested Analyses Field ³	Laboratory
	Creosote	Yes - Rainbow Surface or Brown Suspension	Visually Observable - No Testing Required		Required

Notes:

- 1. 1 If specific pollutant is known, analyze only for that specific pollutant. See Material Safety Data Sheet to verify.
- 2. For each construction material, test for one of the pollutant indicators. Bolded pollutant indicates lowest analysis cost or best indicator. However, the composition of the specific construction material, if known, is the first criterion for selecting which analysis to use.
- 3. See www.hach.com, www.lamotte.com, www.ysi.com and www.chemetrics.com for some of the test kits
- 4. If the type of inorganic fertilizer is unknown, analyze for all pollutant indicators listed.
- 5. Only if special handling requirements are required in the Standard Special Provisions for aerially deposited lead (ADL)
- 6. If used with a dye or fiber matrix, it is considered visually observable and no testing is required.
- 7. Based upon research conducted by Caltrans, the following copolymers/polymers do not discharge pollutants and water quality sampling and analysis is <u>not</u> required: Super Tak[™], M-Binder[™], Fish Stik[™], Pro40dc[™], Fisch-Bond[™], Soil Master WR[™], and EarthGuard[™].

Acronyms:

- BOD Biochemical Oxygen Demand
- COD Chemical Oxygen Demand
- DOC Dissolved Organic Carbon
- EPA Environmental Protection Agency
- HACH Worldwide company that provides advanced analytical systems and technical support for water quality testing.
- SM Standard Method
- SVOC Semi-Volatile Organic Compounds
- TDS Total Dissolved Solids
- TKN Total Kjeldahl Nitrogen
- TOC Total Organic Carbon
- TSP Tri-Sodium Phosphate
- VOC Volatile Organic Compounds

References:

Construction Storm Water Sampling and Analysis Guidance Document, California Stormwater Quality Task Force, October 2001. Environmental Impact of Construction and Repair Materials on Surface and Ground Waters, Report 448, National Cooperative Highway Research Program, 2001 Soil Stabilization for Temporary Slopes, Environmental Programs, California Department of Transportation, October 1, 1999. Statewide Storm Water Management Plan, Division of Environmental Analysis, California Department of Transportation, April 2002. Statewide Storm Water Quality Practice Guidelines, Environmental Program, California Department of Transportation, August 2000. Soil Stabilization for Temporary Slopes and District 7 Erosion Control Pilot Study, June 2000. Stormwater Monitoring Protocols, Guidance Manual, California Department of Transportation, May 2000.

APPENDIX H CASQA BMP HANDBOOK FACT SHEETS

Scheduling

Description and Purpose

Scheduling is the development of a written plan that includes sequencing of construction activities and the implementation of BMPs such as erosion control and sediment control while taking local climate (rainfall, wind, etc.) into consideration. The purpose is to reduce the amount and duration of soil exposed to erosion by wind, rain, runoff, and vehicle tracking, and to perform the construction activities and control practices in accordance with the planned schedule.

Suitable Applications

Proper sequencing of construction activities to reduce erosion potential should be incorporated into the schedule of every construction project especially during rainy season. Use of other, more costly yet less effective, erosion and sediment control BMPs may often be reduced through proper construction sequencing.

Limitations

• Environmental constraints such as nesting season prohibitions reduce the full capabilities of this BMP.

Implementation

- Avoid rainy periods. Schedule major grading operations during dry months when practical. Allow enough time before rainfall begins to stabilize the soil with vegetation or physical means or to install sediment trapping devices.
- Plan the project and develop a schedule showing each phase of construction. Clearly show how the rainy season relates

Categories

EC	Erosion Control	\checkmark			
SE	Sediment Control	×			
тс	Tracking Control	×			
WE	Wind Erosion Control	×			
NO	Non-Stormwater				
NS	Management Control				
	Waste Management and				
WM	Materials Pollution Control				
Legend:					
\checkmark	Primary Objective				

Secondary Objective

Targeted Constituents

Sediment	V
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

to soil disturbing and re-stabilization activities. Incorporate the construction schedule into the SWPPP.

- Include on the schedule, details on the rainy season implementation and deployment of:
 - Erosion control BMPs
 - Sediment control BMPs
 - Tracking control BMPs
 - Wind erosion control BMPs
 - Non-stormwater BMPs
 - Waste management and materials pollution control BMPs
- Include dates for activities that may require non-stormwater discharges such as dewatering, sawcutting, grinding, drilling, boring, crushing, blasting, painting, hydro-demolition, mortar mixing, pavement cleaning, etc.
- Work out the sequencing and timetable for the start and completion of each item such as site clearing and grubbing, grading, excavation, paving, foundation pouring utilities installation, etc., to minimize the active construction area during the rainy season.
 - Sequence trenching activities so that most open portions are closed before new trenching begins.
 - Incorporate staged seeding and re-vegetation of graded slopes as work progresses.
 - Schedule establishment of permanent vegetation during appropriate planting time for specified vegetation.
- Non-active areas should be stabilized as soon as practical after the cessation of soil disturbing activities or one day prior to the onset of precipitation.
- Monitor the weather forecast for rainfall.
- When rainfall is predicted, adjust the construction schedule to allow the implementation of soil stabilization and sediment treatment controls on all disturbed areas prior to the onset of rain.
- Be prepared year-round to deploy erosion control and sediment control BMPs. Erosion may be caused during dry seasons by un-seasonal rainfall, wind, and vehicle tracking. Keep the site stabilized year-round and retain and maintain rainy season sediment trapping devices in operational condition.
- Apply permanent erosion control to areas deemed substantially complete during the project's defined seeding window.
- Avoid soil disturbance during periods with high wind velocities.

Costs

Construction scheduling to reduce erosion may increase other construction costs due to reduced economies of scale in performing site grading. The cost effectiveness of scheduling techniques

should be compared with the other less effective erosion and sedimentation controls to achieve a cost-effective balance.

Inspection and Maintenance

- Verify that work is progressing in accordance with the schedule. If progress deviates, take corrective actions.
- Amend the schedule when changes are warranted.
- Amend the schedule prior to the rainy season to show updated information on the deployment and implementation of construction site BMPs.

References

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities Developing Pollution Prevention Plans and Best Management Practices (EPA 832-R-92-005), U.S. Environmental Protection Agency, Office of Water, September 1992.

Preservation of Existing Vegetation EC-2

Description and Purpose

Carefully planned preservation of existing vegetation minimizes the potential of removing or injuring existing trees, vines, shrubs, and grasses that protect soil from erosion.

Suitable Applications

Preservation of existing vegetation is suitable for use on most projects. Large project sites often provide the greatest opportunity for use of this BMP. Suitable applications include the following:

- Areas within the site where no construction activity occurs or occurs at a later date. This BMP is especially suitable to multi year projects where grading can be phased.
- Areas where natural vegetation exists and is designated for preservation. Such areas often include steep slopes, watercourse, and building sites in wooded areas.
- Areas where local, state, and federal government require preservation, such as vernal pools, wetlands, marshes, certain oak trees, etc. These areas are usually designated on the plans, or in the specifications, permits, or environmental documents.
- Where vegetation designated for ultimate removal can be temporarily preserved and be utilized for erosion control and sediment control.
- Protecting existing vegetation buffers and swales.

Categories

EC	Erosion Control	\checkmark
SE	Sediment Control	
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	
Leg	end:	
\checkmark	Primary Objective	
×	Secondary Objective	

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

Limitations

- Requires forward planning by the owner/developer, contractor, and design staff.
- Limited opportunities for use when project plans do not incorporate existing vegetation into the site design.
- For sites with diverse topography, it is often difficult and expensive to save existing trees while grading the site satisfactory for the planned development.

Implementation

The best way to prevent erosion is to not disturb the land. In order to reduce the impacts of new development and redevelopment, projects may be designed to avoid disturbing land in sensitive areas of the site (e.g., natural watercourses, steep slopes), and to incorporate unique or desirable existing vegetation into the site's landscaping plan. Clearly marking and leaving a buffer area around these unique areas during construction will help to preserve these areas as well as take advantage of natural erosion prevention and sediment trapping.

Existing vegetation to be preserved on the site must be protected from mechanical and other injury while the land is being developed. The purpose of protecting existing vegetation is to ensure the survival of desirable vegetation for shade, beautification, and erosion control. Mature vegetation has extensive root systems that help to hold soil in place, thus reducing erosion. In addition, vegetation helps keep soil from drying rapidly and becoming susceptible to erosion. To effectively save existing vegetation, no disturbances of any kind should be allowed within a defined area around the vegetation. For trees, no construction activity should occur within the drip line of the tree.

Timing

 Provide for preservation of existing vegetation prior to the commencement of clearing and grubbing operations or other soil disturbing activities in areas where no construction activity is planned or will occur at a later date.

Design and Layout

- Mark areas to be preserved with temporary fencing. Include sufficient setback to protect roots.
 - Orange colored plastic mesh fencing works well.
 - Use appropriate fence posts and adequate post spacing and depth to completely support the fence in an upright position.
- Locate temporary roadways, stockpiles, and layout areas to avoid stands of trees, shrubs, and grass.
- Consider the impact of grade changes to existing vegetation and the root zone.
- Maintain existing irrigation systems where feasible. Temporary irrigation may be required.
- Instruct employees and subcontractors to honor protective devices. Prohibit heavy equipment, vehicular traffic, or storage of construction materials within the protected area.

- Consider pruning or mowing vegetation instead of removing it to allow for regrowth.
- If possible, retain vegetation buffer around the site and adjacent waterways.

Costs

There is little cost associated with preserving existing vegetation if properly planned during the project design, and these costs may be offset by aesthetic benefits that enhance property values. During construction, the cost for preserving existing vegetation will likely be less than the cost of applying erosion and sediment controls to the disturbed area. Replacing vegetation inadvertently destroyed during construction can be extremely expensive, sometimes in excess of \$10,000 per tree.

Inspection and Maintenance

During construction, the limits of disturbance should remain clearly marked at all times. Irrigation or maintenance of existing vegetation should be described in the landscaping plan. If damage to protected trees still occurs, maintenance guidelines described below should be followed:

- Verify that protective measures remain in place. Restore damaged protection measures immediately.
- Serious tree injuries shall be attended to by an arborist.
- Damage to the crown, trunk, or root system of a retained tree shall be repaired immediately.
- Trench as far from tree trunks as possible, usually outside of the tree drip line or canopy. Curve trenches around trees to avoid large roots or root concentrations. If roots are encountered, consider tunneling under them. When trenching or tunneling near or under trees to be retained, place tunnels at least 18 in. below the ground surface, and not below the tree center to minimize impact on the roots.
- Do not leave tree roots exposed to air. Cover exposed roots with soil as soon as possible. If soil covering is not practical, protect exposed roots with wet burlap or peat moss until the tunnel or trench is ready for backfill.
- Cleanly remove the ends of damaged roots with a smooth cut.
- Fill trenches and tunnels as soon as possible. Careful filling and tamping will eliminate air spaces in the soil, which can damage roots.
- If bark damage occurs, cut back all loosened bark into the undamaged area, with the cut tapered at the top and bottom and drainage provided at the base of the wood. Limit cutting the undamaged area as much as possible.
- Aerate soil that has been compacted over a trees root zone by punching holes 12 in. deep with an iron bar and moving the bar back and forth until the soil is loosened. Place holes 18 in. apart throughout the area of compacted soil under the tree crown.
- Fertilization:

- Fertilize trees in the late fall or early spring. Although to note, many native species do not require fertilization.
- Apply fertilizer to the soil over the feeder roots and in accordance with label instructions, but never closer than 3 ft to the trunk. Increase the fertilized area by one-fourth of the crown area for conifers that have extended root systems.
- Retain protective measures until all other construction activity is complete to avoid damage during site cleanup and stabilization.

References

County of Sacramento Tree Preservation Ordinance, September 1981.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992.

Water Quality Management Plan for The Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

Description and Purpose

Hydraulic Mulch consists of various types of fibrous materials mixed with water and sprayed onto the soil surface in slurry form to provide a layer of temporary protection from wind and water erosion.

Suitable Applications

Hydraulic mulch as a temporary, stand alone, erosion control BMP is suitable for disturbed areas that require temporary protection from wind and water erosion until permanent soil stabilization activities commence. Examples include:

- Rough-graded areas that will remain inactive for longer than permit-required thresholds (e.g., 14 days) or otherwise require stabilization to minimize erosion or prevent sediment discharges.
- Soil stockpiles.
- Slopes with exposed soil between existing vegetation such as trees or shrubs.
- Slopes planted with live, container-grown vegetation or plugs.
- Slopes burned by wildfire.
- To stabilize earthen berms
- Areas seeded by broadcasting or drilling

Categories

EC	Erosion Control	\checkmark
SE	Sediment Control	
тс	Tracking Control	
WE	Wind Erosion Control	×
NS	Non-Stormwater	
NO	Management Control	
wм	Waste Management and	
VVIVI	Materials Pollution Control	
Lege	end:	
⊠ ı	Primary Category	
_		

Secondary Category

Targeted Constituents

\checkmark

Potential Alternatives

- EC-4 Hydroseeding
- EC-5 Soil Binders
- EC-6 Straw Mulch
- EC-7 Geotextiles and Mats
- EC-8 Wood Mulching
- EC-14 Compost Blanket
- EC-16 Non-Vegetative Stabilization

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

Temporary stabilization during high wind conditions

Hydraulic mulch can also be applied to augment other erosion control BMPs such as:

- In conjunction with straw mulch (see EC-6 Straw Mulch) where the rate of hydraulic mulch is reduced to 100-500 lbs per acre and the slurry is applied over the straw as a tackifying agent to hold the straw in place.
- Supplemental application of soil amendments, such as fertilizer, lime, gypsum, soil biostimulants or compost.

Limitations

In general, hydraulic mulch is not limited by slope length, gradient or soil type. However, the following limitations typically apply:

- Most hydraulic mulch applications, particularly bonded fiber matrices (BFMs), require at least 24 hours to dry before rainfall occurs.
- Temporary applications (i.e., without a vegetative component) may require a second application in order to remain effective for an entire rainy season.
- Treatment areas must be accessible to hydraulic mulching equipment.
- Availability of water sources in remote areas for mixing and application.
- As a stand-alone temporary BMP, hydraulic mulches may need to be re-applied to maintain their erosion control effectiveness, typically after 6-12 months depending on the type of mulch used.
- Availability of hydraulic mulching equipment may be limited just prior to the rainy season and prior to storms due to high demand.
- Cellulose fiber mulches alone may not perform well on steep slopes or in course soils.
- This BMP consists of a mixture of several constituents (e.g., fibers/mulches, compost, tackifiers, and other chemical constituents), some of which may be proprietary and may come pre-mixed by the manufacturer. The water quality impacts of these constituents are relatively unknown, and some may have water quality impacts due to their chemical makeup. Refer to specific chemical properties identified in the product Safety Data Sheet (may not include ecological information); products should be evaluated for project-specific implementation by the SWPPP Preparer. Refer to factsheet EC-05 for further guidance on selecting soil binders.
- A water supply is needed to refill hydro mulch equipment tank.
- Cannot be disturbed by walking or driving on the surface after application.
- Recommend using in conjunction with other BMPs (i.e., fiber rolls, etc.).

Implementation

- Where feasible, it is preferable to prepare soil surfaces prior to application by roughening embankments and fill areas with a crimping or punching type roller or by track walking.
- The majority of hydraulic mulch applications do not necessarily require surface/soil preparation (See EC-15 Soil Preparation) although in almost every case where re-vegetation is included as part of the practice, soil preparation can be beneficial. One of the advantages of hydraulic mulch over other erosion control methods is that it can be applied in areas where soil preparation is precluded by site conditions, such as steep slopes, rocky soils, or inaccessibility.
- Avoid mulch over spray onto roads, sidewalks, drainage channels, existing vegetation, etc.
- Hydraulic mulching is generally performed utilizing specialized machines that have a large water-holding/mixing tank and some form of mechanical agitation or other recirculation method to keep water, mulch and soil amendments in suspension. The mixed hydraulic slurry can be applied from a tower sprayer on top of the machine or by extending a hose to areas remote from the machine.
- Where possible apply hydraulic mulch from multiple directions to adequately cover the soil. Application from a single direction can result in shadowing, uneven coverage and failure of the BMP.
- Hydraulic mulch can also include a vegetative component, such as seed, rhizomes, or stolons (see EC-4 Hydraulic Seed).
- Typical hydraulic mulch application rates range from 2,000 pounds per acre for standard mulches (SMs) to 3,500 lbs. per acre for BFMs. However, the required amount of hydraulic mulch to provide adequate coverage of exposed topsoil may appear to exceed the standard rates when the roughness of the soil surface is changed due to soil preparation methods (see EC-15 Soil Preparation) or by slope gradient.
- Other factors such as existing soil moisture and soil texture can have a profound effect on the amount of hydraulic mulch required (i.e. application rate) applied to achieve an erosion-resistant covering.
- Avoid use of mulch without a tackifier component, especially on slopes.
- Mulches used in the hydraulic mulch slurry can include:
 - Cellulose fiber (paper- or corn-based)
 - Wood fibers
 - Cotton
 - Synthetics
 - Compost (see EC-14, Compost Blanket)
 - Straw

• Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.

Categories of Hydraulic Mulches

Standard Hydraulic Mulch (SM)

Standard hydraulic mulches are generally applied at a rate of 2,000 lbs. per acre and are manufactured containing around 5% tackifier (i.e. soil binder), usually a plant-derived guar or psyllium type. Most standard mulches are green in color derived from food-color based dyes.

Hydraulic Matrices (HM) and Stabilized Fiber Matrices (SFM)

Hydraulic matrices and stabilized fiber matrices are slurries which contain increased levels of tackifiers/soil binders; usually 10% or more by weight. HMs and SFMs have improved performance compared to a standard hydraulic mulch (SM) because of the additional percentage of tackifier and because of their higher application rates, typically 2,500 – 4,000 lbs. per acre. Hydraulic matrices can include a mixture of fibers, for example, a 50/50 blend of paper and wood fiber. In the case of an SFM, the tackifier/soil binder is specified as a polyacrylamide (PAM).

Bonded Fiber Matrix (BFM)

Bonded fiber matrices (BFMs) are hydraulically-applied systems of fibers, adhesives (typically guar- or polymer-based) and chemical cross-links. Upon drying, the slurry forms an erosion-resistant blanket that prevents soil erosion and promotes vegetation establishment. The cross-linked adhesive in the BFM should be biodegradable and should not dissolve or disperse upon re-wetting. BFMs are typically applied at rates from 3,000 to 4,000 lbs. per acre based on the manufacturer's recommendation. BFMs should not be applied immediately before, during or immediately after rainfall or if the soil is saturated. Depending on the product, BFMs typically require 12 to 24 hours to dry and become effective.

Hydraulic Compost Matrix (HCM)

Hydraulic compost matrix (HCM) is a field-derived practice whereby finely graded or sifted compost is introduced into the hydraulic mulch slurry. A guar-type tackifier can be added for steeper slope applications as well as any specified seed mixtures. An HCM can help to accelerate seed germination and growth. HCMs are particularly useful as an in-fill for three-dimensional re-vegetation geocomposites, such as turf reinforcement mats (TRM) (see EC-7 Geotextiles and Mats).

Costs

Average installed costs for hydraulic mulch categories are is provided in Table 1, below.

Table HYDRAULIC MULCH BMPs INSTALLED COSTS

BMP	Installed Cost/Acre
Standard Hydraulic Mulching (SM)	\$2,100 - \$4,700 per acre
Hydraulic Matrices (HM) and Stabilized Fiber Matrices	
Guar-based	\$2,600 - \$5,200 per acre
PAM-based	\$3,200 - \$7,200 per acre
Bonded Fiber Matrix (BFM)	\$5,000 - \$8,800 per acre
Hydraulic Compost Matrix (HCM)	\$3,800 - \$4,500 per acre

Source: Cost information received from individual product manufacturers solicited by Geosyntec Consultants (2004). Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

Inspection and Maintenance

- Maintain an unbroken, temporary mulched ground cover throughout the period of construction when the soils are not being reworked.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.
- Compare the number of bags or weight of applied mulch to the area treated to determine actual application rates and compliance with specifications.

References

Soil Stabilization BMP Research for Erosion and Sediment Controls: Cost Survey Technical Memorandum, State of California Department of Transportation (Caltrans), July 2007.

Controlling Erosion of Construction Sites, Agricultural Information #347, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) (formerly Soil Conservation Service – SCS).

Guides for Erosion and Sediment Control in California, USDA Soils Conservation Service, January 1991.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Sedimentation and Erosion Control, an Inventory of Current Practices Draft, US EPA, April 1990.

Soil Erosion by Water, Agriculture Information Bulletin #513, U.S. Department of Agriculture, Soil Conservation Service.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999

Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

Hydroseeding

Description and Purpose

Hydroseeding typically consists of applying a mixture of a hydraulic mulch, seed, and water with the possible addition of tackifier, compost, mycorrhizae inoculant, fertilizer, and/or soil conditioner, to temporarily protect exposed soils from erosion by water and wind. Hydraulic seeding, or hydroseeding, is simply the method by which temporary or permanent seed is applied to the soil surface and temporary erosion control is established by means of the mulch component.

Suitable Applications

Hydroseeding is suitable for disturbed areas requiring temporary protection until permanent stabilization is established, for disturbed areas that will be re-disturbed following an extended period of inactivity, or to apply permanent stabilization measures. Hydroseeding without mulch or other cover (e.g., EC-7, Geotextiles and Mats) is not a stand-alone erosion control BMP and should be combined with additional measures until vegetation establishment.

Typical applications for hydroseeding include:

- Disturbed soil/graded areas where permanent stabilization or continued earthwork is not anticipated prior to seed germination.
- Cleared and graded areas exposed to seasonal rains or temporary irrigation.
- To vegetate swales and earthen berms.

Categories

EC	Erosion Control	\checkmark
SE	Sediment Control	
тс	Tracking Control	
WE	Wind Erosion Control	×
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	
Legend:		
\checkmark	Primary Category	
×	Secondary Category	

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

- EC-3 Hydraulic Mulch
- EC-5 Soil Binders
- EC-6 Straw Mulch
- EC-7 Geotextiles and Mats
- EC-8 Wood Mulching
- EC-14 Compost Blanket
- EC-16 Non-Vegetative Stabilization

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

• Areas not subject to heavy wear by construction equipment or high traffic.

Limitations

- Availability of hydroseeding equipment may be limited just prior to the rainy season and prior to storms due to high demand.
- Hydraulic seed should be applied with hydraulic mulch or a stand-alone hydroseed application should be followed by one of the following:
 - Straw mulch (see Straw Mulch EC-6)
 - Rolled erosion control products (see Geotextiles and Mats EC-7)
 - Application of Compost Blanket (see Compost Blanket EC-14)

Hydraulic seed may be used alone only on small flat surfaces when there is sufficient time in the season to ensure adequate vegetation establishment and coverage to provide adequate erosion control.

- Hydraulic seed without mulch does not provide immediate erosion control.
- Temporary seeding may not be appropriate for steep slopes (i.e., slopes readily prone to rill erosion or without sufficient topsoil).
- Temporary seeding may not be appropriate in dry periods without supplemental irrigation.
- Temporary vegetation may have to be removed before permanent vegetation is applied.
- Temporary vegetation may not be appropriate for short term inactivity (i.e., less than 3-6 months).
- Vegetation may not establish when hydroseed is applied to very compact soils.
- Mulch may inhibit germination when applied at high rates.
- This BMP consists of a mixture of several constituents (e.g., fibers/mulches, tackifiers, and other chemical constituents), some of which may be proprietary and may come pre-mixed by the manufacturer. The water quality impacts of these constituents are relatively unknown, and some may have water quality impacts due to their chemical makeup. Additionally, these constituents may require non-visible pollutant monitoring. Refer to specific chemical properties identified in the product's Safety Data Sheet (SDS), although, note that not all SDS's provide ecological information; products should be evaluated for project-specific implementation by the QSD. Refer to fact sheet EC-05, Soil Binders, for further guidance on selecting soil binders.

Implementation

In order to select appropriate hydraulic seed mixtures, an evaluation of site conditions should be performed with respect to:

-	Soil conditions	-	Maintenance requirements
-	Site topography and exposure (sun/wind)	-	Sensitive adjacent areas
-	Season and climate	-	Water availability
-	Vegetation types	-	Plans for permanent vegetation

The local office of the U.S.D.A. Natural Resources Conservation Service (NRCS), Resource Conservation Districts and Agricultural Extension Service can provide information on appropriate seed mixes.

The following steps should be followed for implementation:

- Where appropriate or feasible, soil should be prepared to receive the seed by disking or otherwise scarifying (See EC-15, Soil Preparation) the surface to eliminate crust, improve air and water infiltration and create a more favorable environment for germination and growth.
- Avoid use of hydraulic seed in areas where the BMP would be incompatible with future earthwork activities.
- Hydraulic seed can be applied using a multiple step or one step process.
 - In a multiple step process, hydraulic seed is applied first, followed by mulch or a Rolled Erosion Control Product (RECP).
 - In the one step process, hydraulic seed is applied with hydraulic mulch in a hydraulic matrix. When the one step process is used to apply the mixture of fiber, seed, etc., the seed rate should be increased to compensate for all seeds not having direct contact with the soil.
- All hydraulically seeded areas should have mulch, or alternate erosion control cover to keep seeds in place and to moderate soil moisture and temperature until the seeds germinate and grow.
- All seeds should be in conformance with the California State Seed Law of the Department of Agriculture. Each seed bag should be delivered to the site sealed and clearly marked as to species, purity, percent germination, dealer's guarantee, and dates of test. The container should be labeled to clearly reflect the amount of Pure Live Seed (PLS) contained. All legume seed should be pellet inoculated. Inoculant sources should be species specific and should be applied at a rate of 2 lb of inoculant per 100 lb seed.
- Commercial fertilizer should conform to the requirements of the California Food and Agricultural Code, which can be found at: <u>http://www.leginfo.ca.gov/.html/fac_table_of_contents.html</u>. Fertilizer should be pelleted or granular form.
- Follow up applications should be made as needed to cover areas of poor coverage or germination/vegetation establishment and to maintain adequate soil protection.
- Avoid over spray onto roads, sidewalks, drainage channels, existing vegetation, etc.

• Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.

Costs

Average cost for installation and maintenance may vary from as low as \$2,400 per acre for flat slopes and stable soils, to \$5,200 per acre for moderate to steep slopes and/or erosive soils. Cost of seed mixtures vary based on types of required vegetation.

ВМР	Installed Cost per Acre
Hydraulic Seed	\$2,400-\$5,200
	11.1. 11

Source: Cost information received from individual product manufacturers solicited by Geosyntec Consultants (2004). Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.
- Where seeds fail to germinate, or they germinate and die, the area must be re-seeded, fertilized, and mulched within the planting season, using not less than half the original application rates.
- Irrigation systems, if applicable, should be inspected daily while in use to identify system
 malfunctions and line breaks. When line breaks are detected, the system must be shut down
 immediately and breaks repaired before the system is put back into operation.
- Irrigation systems should be inspected for complete coverage and adjusted as needed to maintain complete coverage.

References

Soil Stabilization BMP Research for Erosion and Sediment Controls: Cost Survey Technical Memorandum, State of California Department of Transportation (Caltrans), July 2007.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999.

Description and Purpose

Soil binding consists of application and maintenance of a soil stabilizer to exposed soil surfaces. Soil binders are materials applied to the soil surface to temporarily prevent water and wind induced erosion of exposed soils on construction sites.

Suitable Applications

Soil binders are typically applied to disturbed areas requiring temporary protection. Because soil binders, when used as a stand-alone practice, can often be incorporated into the soil, they are a good alternative to mulches in areas where grading activities will soon resume. Soil binders are commonly used in the following areas:

- Rough graded soils that will be inactive for a short period of time.
- Soil stockpiles.
- Temporary haul roads prior to placement of crushed rock.
- Compacted soil road base.
- Construction staging, materials storage, and layout areas.
- Slopes and areas requiring stabilization prior to rain.
- Disturbed areas subject to high winds.

Categories

EC	Erosion Control	\checkmark	
SE	Sediment Control		
тс	Tracking Control		
WE	Wind Erosion Control	×	
NS	Non-Stormwater Management Control		
WM	Waste Management and Materials Pollution Control		
Legend:			
Primary Category			

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

EC-3 Hydraulic Mulch

EC-4 Hydroseeding

EC-6 Straw Mulch

EC-7 Geotextiles and Mats

EC-8 Wood Mulching

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

Limitations

- Soil binders are temporary in nature and may need reapplication.
- Soil binders require a minimum curing time until fully effective, as prescribed by the manufacturer. Curing time may be 24 hours or longer. Soil binders may need reapplication after a storm event.
- Soil binders will generally experience spot failures during heavy rainfall events. If runoff penetrates the soil at the top of a slope treated with a soil binder, it is likely that the runoff will undercut the stabilized soil layer and discharge at a point further down slope.
- Plant-material-based soil binders do not generally hold up to pedestrian or vehicular traffic across treated areas as well as polymeric emulsion blends or cementitious-based binders.
- Soil binders may not sufficiently penetrate compacted soils.
- Some soil binders are soil texture specific in terms of their effectiveness. For example, polyacrylamides (PAMs) work very well on silt and clayey soils but their performance decreases dramatically in sandy soils.
- Some soil binders may not perform well with low relative humidity. Under rainy conditions, some agents may become slippery or leach out of the soil.
- Soil binders may not cure if low temperatures occur within 24 hours of application.
- The water quality impacts of some chemical soil binders are relatively unknown, and some may have water quality impacts due to their chemical makeup. Additionally, these chemicals may require non-visible pollutant monitoring. Products should be evaluated for project-specific implementation by the SWPPP Preparer. Refer to the product Material Safety Data Sheet for chemical properties.

Implementation

General Considerations

- Soil binders should conform to local municipality specifications and requirements.
- Site soil types will dictate appropriate soil binders to be used.
- A soil binder must be environmentally benign (non-toxic to plant and animal life), easy to apply, easy to maintain, economical, and should not stain paved or painted surfaces. Soil binders should not pollute stormwater when cured. Obtain a Safety Data Sheet (SDS) from the manufacturer to ensure non-toxicity (note however, the SDS may not include ecological information).
- Stormwater runoff from PAM treated soils should pass through one of the following sediment control BMP prior to discharging to surface waters.
 - When the total drainage area is greater than or equal to 5 acres, PAM treated areas should drain to a sediment basin.

- Areas less than 5 acres should drain to sediment control BMPs, such as a sediment trap, or a series of check dams. The total number of check dams used should be maximized to achieve the greatest amount of settlement of sediment prior to discharging from the site. Each check dam should be spaced evenly in the drainage channel through which stormwater flows are discharged off site.
- Performance of soil binders depends on temperature, humidity, and traffic across treated areas.
- Avoid over spray onto roads, sidewalks, drainage channels, existing vegetation, etc.
- Some soil binders are designed for application to roads.
- Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.

Selecting a Soil Binder

Properties of common soil binders used for erosion control are provided on Table 1 at the end of this Fact Sheet. Use Table 1 to select an appropriate soil binder. Refer to WE-1, Wind Erosion Control, for dust control soil binders.

Factors to consider when selecting a soil binder include the following:

- Suitability to situation Consider where the soil binder will be applied, if it needs a high
 resistance to leaching or abrasion, and whether it needs to be compatible with any existing
 vegetation. Determine the length of time soil stabilization will be needed, and if the soil
 binder will be placed in an area where it will degrade rapidly. In general, slope steepness is
 not a discriminating factor for the listed soil binders.
- Soil types and surface materials Fines and moisture content are key properties of surface materials. Consider a soil binder's ability to penetrate, likelihood of leaching, and ability to form a surface crust on the surface materials.
- Frequency of application The frequency of application is related to the functional longevity of the binder, which can be affected by subgrade conditions, surface type, climate, and maintenance schedule.
- Frequent applications could lead to high costs. Application frequency may be minimized if the soil binder has good penetration, low evaporation, and good longevity. Consider also that frequent application will require frequent equipment clean up.

Plant-Material-Based (Short Lived, <6 months) Binders

<u>Guar:</u> Guar is a non-toxic, biodegradable, natural galactomannan-based hydrocolloid treated with dispersant agents for easy field mixing. It should be mixed with water at the rate of 11 to 15 lb per 1,000 gallons. Recommended minimum application rates are as follows:

Slope (H:V):	Flat	4:1	3:1	2:1	1:1
lb/acre:	40	45	50	60	70

Application Rates for Guar Soil Stabilizer

<u>Psyllium:</u> Psyllium is composed of the finely ground muciloid coating of plantago seeds that is applied as a dry powder or in a wet slurry to the surface of the soil. It dries to form a firm but rewettable membrane that binds soil particles together but permits germination and growth of seed. Psyllium requires 12 to 18 hours drying time. Application rates should be from 80 to 200 lb/acre, with enough water in solution to allow for a uniform slurry flow.

<u>Starch:</u> Starch is non-ionic, cold water soluble (pre-gelatinized) granular cornstarch. The material is mixed with water and applied at the rate of 150 lb/acre. Approximate drying time is 9 to 12 hours.

Plant-Material-Based (Long Lived, 6-12 months) Binders

<u>Pitch and Rosin Emulsion:</u> Generally, a non-ionic pitch and rosin emulsion has a minimum solids content of 48%. The rosin should be a minimum of 26% of the total solids content. The soil stabilizer should be non-corrosive, water dilutable emulsion that upon application cures to a water insoluble binding and cementing agent. For soil erosion control applications, the emulsion is diluted and should be applied as follows:

- For clayey soil: 5 parts water to 1-part emulsion
- For sandy soil: 10 parts water to 1-part emulsion

Application can be by water truck or hydraulic seeder with the emulsion and product mixture applied at the rate specified by the manufacturer.

Polymeric Emulsion Blend Binders

<u>Acrylic Copolymers and Polymers:</u> Polymeric soil stabilizers should consist of a liquid or solid polymer or copolymer with an acrylic base that contains a minimum of 55% solids. The polymeric compound should be handled and mixed in a manner that will not cause foaming or should contain an anti-foaming agent. The polymeric emulsion should not exceed its shelf life or expiration date; manufacturers should provide the expiration date. Polymeric soil stabilizer should be readily miscible in water, non-injurious to seed or animal life, non-flammable, should provide surface soil stabilization for various soil types without totally inhibiting water infiltration, and should not re-emulsify when cured. The applied compound typically requires 12 to 24 hours drying time. Liquid copolymer should be diluted at a rate of 10 parts water to 1part polymer and the mixture applied to soil at a rate of 1,175 gallons/acre.

<u>Liquid Polymers of Methacrylates and Acrylates:</u> This material consists of a tackifier/sealer that is a liquid polymer of methacrylates and acrylates. It is an aqueous 100% acrylic emulsion blend of 40% solids by volume that is free from styrene, acetate, vinyl, ethoxylated surfactants or silicates. For soil stabilization applications, it is diluted with water in accordance with the manufacturer's recommendations and applied with a hydraulic seeder at the rate of 20 gallons/acre. Drying time is 12 to 18 hours after application.

<u>Copolymers of Sodium Acrylates and Acrylamides:</u> These materials are non-toxic, dry powders that are copolymers of sodium acrylate and acrylamide. They are mixed with water and applied to the soil surface for erosion control at rates that are determined by slope gradient:

Slope Gradient (H:V)	lb/acre
Flat to 5:1	3.0 - 5.0
5:1 to 3:1	5.0 - 10.0
2:1 to 1:1	10.0 - 20.0

<u>Poly-Acrylamide (PAM) and Copolymer of Acrylamide</u>: Linear copolymer polyacrylamide for use as a soil binder is packaged as a dry flowable solid, as a liquid. Refer to the manufacturer's recommendation for dilution and application rates as they vary based on liquid or dry form, site conditions and climate.

- Limitations specific to PAM are as follows:
 - Do not use PAM on a slope that flows into a water body without passing through a sediment trap or sediment basin.
 - The specific PAM copolymer formulation must be anionic. Cationic PAM should not be used in any application because of known aquatic toxicity problems. Only the highest drinking water grade PAM, certified for compliance with ANSI/NSF Standard 60 for drinking water treatment, should be used for soil applications.
 - PAM designated for erosion and sediment control should be "water soluble" or "linear" or "non-cross linked".
 - PAM should not be used as a stand-alone BMP to protect against water-based erosion. When combined with mulch, its effectiveness increases dramatically.

<u>Hydro-Colloid Polymers</u>: Hydro-Colloid Polymers are various combinations of dry flowable poly-acrylamides, copolymers and hydro-colloid polymers that are mixed with water and applied to the soil surface at rates of 55 to 60 lb/acre. Drying times are 0 to 4 hours.

Cementitious-Based Binders

<u>Gypsum</u>: This is a formulated gypsum-based product that readily mixes with water and mulch to form a thin protective crust on the soil surface. It is composed of high purity gypsum that is ground, calcined and processed into calcium sulfate hemihydrate with a minimum purity of 86%. It is mixed in a hydraulic seeder and applied at rates 4,000 to 12,000 lb/acre. Drying time is 4 to 8 hours.

Applying Soil Binders

After selecting an appropriate soil binder, the untreated soil surface must be prepared before applying the soil binder. The untreated soil surface must contain sufficient moisture to assist the agent in achieving uniform distribution. In general, the following steps should be followed:

- Follow manufacturer's written recommendations for application rates, pre-wetting of application area, and cleaning of equipment after use.
- Prior to application, roughen embankment and fill areas.
- Consider the drying time for the selected soil binder and apply with sufficient time before anticipated rainfall. Soil binders should not be applied during or immediately before rainfall.
- Avoid over spray onto roads, sidewalks, drainage channels, sound walls, existing vegetation, etc.

- Soil binders should not be applied to frozen soil, areas with standing water, under freezing or rainy conditions, or when the temperature is below 40°F during the curing period.
- More than one treatment is often necessary, although the second treatment may be diluted or have a lower application rate.
- Generally, soil binders require a minimum curing time of 24 hours before they are fully effective. Refer to manufacturer's instructions for specific cure time.
- For liquid agents:
 - Crown or slope ground to avoid ponding.
 - Uniformly pre-wet ground at 0.03 to 0.3 gal/yd 2 or according to manufacturer's recommendations.
 - Apply solution under pressure. Overlap solution 6 to 12 in.
 - Allow treated area to cure for the time recommended by the manufacturer; typically, at least 24 hours.
 - Apply second treatment before first treatment becomes ineffective, using 50% application rate.
 - In low humidities, reactivate chemicals by re-wetting with water at 0.1 to 0.2 gal/yd².

Costs

Costs vary according to the soil stabilizer selected for implementation. The following are approximate installed costs:

Soil Binder	Cost per Acre
Plant-Material-Based (Short Lived) Binders	\$900-\$1,200
Plant-Material-Based (Long Lived) Binders	\$1,500-\$1,900
Polymeric Emulsion Blend Binders	\$900-\$1,900
Cementitious-Based Binders	\$1,000-\$1,500

Source: Cost information received from individual product manufacturers solicited by Geosyntec Consultants (2004). Adjusted for inflation (2016 dollars) by Tetra Tech Inc.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.

Table 1 Proper	ties of Soil Bin	aers for Erosio			
	Binder Type				
Evaluation Criteria	Plant Material Based (Short Lived)	Plant Material Based (Long Lived)	Polymeric Emulsion Blends	Cementitious- Based Binders	
Relative Cost	Low	Moderate to High	Low to High	Low to Moderate	
Resistance to Leaching	High	High	Low to Moderate	Moderate	
Resistance to Abrasion	Moderate	Low	Moderate to High	Moderate to High	
Longevity	Short to Medium	Medium	Medium to Long	Medium	
Minimum Curing Time before Rain	9 to 18 hours	19 to 24 hours	o to 24 hours	4 to 8 hours	
Compatibility with Existing Vegetation	Good	Poor	Poor	Poor	
Mode of Degradation	Biodegradable	Biodegradable	Photodegradable/ Chemically Degradable	Photodegradable/ Chemically Degradable	
Labor Intensive	No	No	No	No	
Specialized Application Equipment	Water Truck or Hydraulic Mulcher	Water Truck or Hydraulic Mulcher	Water Truck or Hydraulic Mulcher	Water Truck or Hydraulic Mulcher	
Liquid/Powder	Powder	Liquid	Liquid/Powder	Powder	
Surface Crusting	Yes, but dissolves on rewetting	Yes	Yes, but dissolves on rewetting	Yes	
Clean Up	Water	Water	Water	Water	
Erosion Control Application Rate	Varies ⁽¹⁾	Varies ⁽¹⁾	Varies ⁽¹⁾	4,000 to 12,000 lbs/acre	

(1) See Implementation for specific rates.

References

Erosion Control Pilot Study Report, State of California Department of Transportation (Caltrans), June 2000.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Sedimentation and Erosion Control, An Inventory of Current Practices Draft, US EPA, April 1990.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999.

Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992.

Description and Purpose

Straw mulch consists of placing a uniform layer of straw and incorporating it into the soil with a studded roller or crimper or anchoring it with a tackifier or stabilizing emulsion. Straw mulch protects the soil surface from the impact of rain drops, preventing soil particles from becoming dislodged.

Suitable Applications

Straw mulch is suitable for disturbed areas requiring temporary protection until permanent stabilization is established. Straw mulch can be specified for the following applications:

- As a stand-alone BMP on disturbed areas until soils can be prepared for permanent vegetation. The longevity of straw mulch is typically less than six months.
- Applied in combination with temporary seeding strategies
- Applied in combination with permanent seeding strategies to enhance plant establishment and final soil stabilization
- Applied around containerized plantings to control erosion until the plants become established to provide permanent stabilization

Limitations

Availability of straw and straw blowing equipment may be limited just prior to the rainy season and prior to storms due to high demand.

Categories

EC	Erosion Control	$\overline{\mathbf{A}}$	
SE	Sediment Control		
тс	Tracking Control		
WE	Wind Erosion Control	×	
NS	Non-Stormwater Management Control		
WM	Waste Management and Materials Pollution Control		
Legend:			
Primary Category			
_			

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

- EC-3 Hydraulic Mulch
- EC-4 Hydroseeding
- EC-5 Soil Binders
- EC-7 Geotextiles and Mats
- EC-8 Wood Mulching
- EC-14 Compost Blanket

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- There is a potential for introduction of weed seed and unwanted plant material if weed-free agricultural straw is not specified.
- Straw mulch applied by hand is more time intensive and potentially costly.
- Wind may limit application of straw and blow straw into undesired locations.
- May have to be removed prior to permanent seeding or prior to further earthwork.
- "Punching" of straw does not work in sandy soils, necessitating the use of tackifiers.
- Potential fugitive dust control issues associated with straw applications can occur. Application of a stabilizing emulsion or a water stream at the same time straw is being blown can reduce this problem.
- Use of plastic netting should be avoided in areas where wildlife may be entrapped and may be prohibited for projects in certain areas with sensitive wildlife species, especially reptiles and amphibians.

Implementation

- Straw should be derived from weed-free wheat, rice, or barley. Where required by the plans, specifications, permits, or environmental documents, native grass straw should be used.
- Use tackifier to anchor straw mulch to the soil on slopes.
- Crimping, punch roller-type rollers, or track walking may also be used to incorporate straw mulch into the soil on slopes. Track walking can be used where other methods are impractical.
- Avoid placing straw onto roads, sidewalks, drainage channels, sound walls, existing vegetation, etc.
- Straw mulch with tackifier should not be applied during or immediately before rainfall.
- Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.

Application Procedures

- When using a tackifier to anchor the straw mulch, roughen embankment or fill areas by rolling with a crimping or punching-type roller or by track walking before placing the straw mulch. Track walking should only be used where rolling is impractical.
- Apply straw at a rate of between 3,000 and 4,000 lb./acre, either by machine or by hand distribution and provide 100% ground cover. A lighter application is used for flat surfaces and a heavier application is used for slopes.
- Evenly distribute straw mulch on the soil surface.
- Anchoring straw mulch to the soil surface by "punching" it into the soil mechanically (incorporating) can be used in lieu of a tackifier.

- Methods for holding the straw mulch in place depend upon the slope steepness, accessibility, soil conditions, and longevity.
 - A tackifier acts to glue the straw fibers together and to the soil surface. The tackifier should be selected based on longevity and ability to hold the fibers in place. A tackifier is typically applied at a rate of 125 lb./acre. In windy conditions, the rates are typically 180 lb./acre.
 - On very small areas, a spade or shovel can be used to punch in straw mulch.
 - On slopes with soils that are stable enough and of sufficient gradient to safely support construction equipment without contributing to compaction and instability problems, straw can be "punched" into the ground using a knife blade roller or a straight bladed coulter, known commercially as a "crimper."

Costs

Average annual cost for installation and maintenance is included in the table below. Application by hand is more time intensive and potentially more costly.

ВМР	Unit Cost per Acre
Straw mulch, crimped or punched	\$3,150-\$6,900
Straw mulch with tackifier	\$2,300-\$6,200

Source: Cost information received from individual product suppliers solicited by Geosyntec Consultants (2004). Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.
- The key consideration in inspection and maintenance is that the straw needs to last long enough to achieve erosion control objectives. Straw mulch as a stand-alone BMP is temporary and is not suited for long-term erosion control.
- Maintain an unbroken, temporary mulched ground cover while disturbed soil areas are inactive. Repair any damaged ground cover and re-mulch exposed areas.
- Reapplication of straw mulch and tackifier may be required to maintain effective soil stabilization over disturbed areas and slopes.

References

Soil Stabilization BMP Research for Erosion and Sediment Controls: Cost Survey Technical Memorandum, State of California Department of Transportation (Caltrans), July 2007.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

Controlling Erosion of Construction Sites, Agricultural Information Bulletin #347, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) (formerly Soil Conservation Service – SCS).

Guides for Erosion and Sediment Control in California, USDA Soils Conservation Service, January 1991.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Soil Erosion by Water, Agricultural Information Bulletin #513, U.S. Department of Agriculture, Soil Conservation Service.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

Geotextiles and Mats

Description and Purpose

Rolled Erosion Control Products (RECPs), also known as erosion control matting or blankets, can be made of natural or synthetic materials or a combination of the two. RECPs are used to cover the soil surface to reduce erosion from rainfall impact, hold soil in place, and absorb and hold moisture near the soil surface. Additionally, RECPs may be used to stabilize soils until vegetation is established or to reinforce non-woody surface vegetation.

Suitable Applications

RECPs are typically applied on slopes where erosion hazard is high, and vegetation will be slow to establish. Mattings are also used on stream banks, swales and other drainage channels where moving water at velocities between 3 ft/s and 6 ft/s are likely to cause scour and wash out new vegetation and in areas where the soil surface is disturbed and where existing vegetation has been removed. RECPs may also be used when seeding cannot occur (e.g., late season construction and/or the arrival of an early rain season). RECPs should be considered when the soils are fine grained and potentially erosive. RECPs should be considered in the following situations:

- Steep slopes, generally steeper than 3:1 (H:V).
- Long slopes.
- Slopes where the erosion potential is high.
- Slopes and disturbed soils where mulch must be anchored.

Categories

Legend:		
WM	Waste Management and Materials Pollution Control	
NS	Non-Stormwater Management Control	
WE	Wind Erosion Control	×
тс	Tracking Control	
SE	Sediment Control	
EC	Erosion Control	\checkmark

Secondary Category

Targeted Constituents

Sediment	V
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

EC-3 Hydraulic Mulch

EC-4 Hydroseeding

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- Disturbed areas where temporary cover is needed, or plants are slow to establish or will not establish.
- Channels with flows exceeding 3.3 ft/s.
- Channels to be vegetated.
- Stockpiles.
- Slopes adjacent to water bodies.

Limitations

- RECP installed costs are generally higher than other erosion control BMPs, limiting their use to areas where other BMPs are ineffective (e.g., channels, steep slopes).
- RECPs may delay seed germination, due to reduction in soil temperature and/or sunlight.
- RECPs are generally not suitable for excessively rocky sites or areas where the final vegetation will be mowed (since staples and netting can catch in mowers). If a staple or pin cannot be driven into the soil because the underlying soil is too hard or rocky, then an alternative BMP should be selected.
- If used for temporary erosion control, RECPs should be removed and disposed of prior to application of permanent soil stabilization measures.
- The use of plastic sheeting should be limited to covering stockpiles or very small graded areas for short periods of time (such as through one imminent storm event) until other measures, such as seeding and mulching, may be installed.
 - Plastic sheeting is easily vandalized, easily torn, photodegradable, and must be disposed of at a landfill.
 - Plastic sheeting results in 100% runoff, which may cause serious erosion problems in the areas receiving the increased flow.
- According to the State Water Board's *CGP Review, Issue #2*, only RECPs that either do not contain plastic netting or contain netting manufactured from 100% biodegradable non-plastic materials, such as jute, sisal, or coir fiber should be used due to plastic pollution and wildlife concerns. If a plastic-netted product is used for temporary stabilization, it must be promptly removed when no longer needed and removed or replaced with non-plastic netted RECPs for final stabilization.
- RECPs may have limitations based on soil type, slope gradient, or channel flow rate; consult the manufacturer for proper selection.
- Not suitable for areas that have foot traffic (tripping hazard) e.g., pad areas around buildings under construction.
- RECPs that incorporate a plastic netting (e.g. straw blanket typically uses a plastic netting to hold the straw in place) may not be suitable near known wildlife habitat. Wildlife can become trapped in the plastic netting. As per State Water Board guidance, RECPs that

contain plastic netting are discouraged for temporary controls and are not acceptable alternatives for permanent controls. RECPs that do not contain plastic netting or contain netting manufactured from 100% biodegradable non-plastic materials such as jute, sisal, or coir fiber should be used.

 RECPs may have limitations in extremely windy climates; they are susceptible to wind damage and displacement. However, when RECPs are properly trenched at the top and bottom and stapled in accordance with the manufacturer's recommendations, problems with wind can be minimized.

Implementation

Material Selection

- Natural RECPs have been found to be effective where re-vegetation will be provided by reseeding. The choice of material should be based on the size of area, side slopes, surface conditions such as hardness, moisture, weed growth, and availability of materials.
- Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.
- The following natural and synthetic RECPs are commonly used:

Geotextiles

- Material can be a woven or a non-woven polypropylene fabric with minimum thickness of 0.06 in., minimum width of 12 ft and should have minimum tensile strength of 150 lbs (warp), 80 lbs (fill) in conformance with the requirements in ASTM Designation: D 4632. The permittivity of the fabric should be approximately 0.07 sec⁻¹ in conformance with the requirements in ASTM Designation: D4491. The fabric should have an ultraviolet (UV) stability of 70 percent in conformance with the requirements in ASTM designation: D4355. Geotextile blankets must be secured in place with wire staples or sandbags and by keying into tops of slopes to prevent infiltration of surface waters under geotextile. Staples should be made of minimum 11-gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown.
- Geotextiles may be reused if they are suitable for the use intended.

Plastic Covers

- Generally plastic sheeting should only be used as stockpile covering or for very small graded areas for short periods of time (such as through one imminent storm event). If plastic sheeting must be used, choose a plastic that will withstand photo degradation.
- Plastic sheeting should have a minimum thickness of 6 mils and must be keyed in at the top of slope (when used as a temporary slope protection) and firmly held in place with sandbags or other weights placed no more than 10 ft apart. Seams are typically taped or weighted down their entire length, and there should be at least a 12 in. to 24 in. overlap of all seams. Edges should be embedded a minimum of 6 in. in soil (when used as a temporary slope protection).
- All sheeting must be inspected periodically after installation and after significant rainstorms to check for erosion, undermining, and anchorage failure. Any failures must be repaired

immediately. If washout or breakages occur, the material should be re-installed after repairing the damage to the slope.

Erosion Control Blankets/Mats

- Biodegradable RECPs are typically composed of jute fibers, curled wood fibers, straw, coconut fiber, or a combination of these materials. In order for an RECP to be considered 100% biodegradable, the netting, sewing or adhesive system that holds the biodegradable mulch fibers together must also be biodegradable. See typical installation details at the end of this fact sheet.
 - **Jute** is a natural fiber that is made into a yarn that is loosely woven into a biodegradable mesh. The performance of jute as a stand-alone RECP is low. Most other RECPs outperform jute as a temporary erosion control product and therefore jute is not commonly used. It is designed to be used in conjunction with vegetation. The material is supplied in rolled strips, which should be secured to the soil with U-shaped staples or stakes in accordance with manufacturers' recommendations.
 - Excelsior (curled wood fiber) blanket material should consist of machine produced mats of curled wood excelsior with 80 percent of the fiber 6 in. or longer. The excelsior blanket should be of consistent thickness. The wood fiber must be evenly distributed over the entire area of the blanket. The top surface of the blanket should be covered with a photodegradable extruded plastic mesh. The blanket should be smolder resistant without the use of chemical additives and should be non-toxic and non-injurious to plant and animal life. Excelsior blankets should be furnished in rolled strips, a minimum of 48 in. wide, and should have an average weight of 0.8 lb/yd², ±10 percent, at the time of manufacture. Excelsior blankets must be secured in place with wire staples. Staples should be made of minimum 11-gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown.
 - **Straw blanket** should be machine produced mats of straw with a lightweight biodegradable netting top layer. The straw should be attached to the netting with biodegradable thread or glue strips. The straw blanket should be of consistent thickness. The straw should be evenly distributed over the entire area of the blanket. Straw blanket should be furnished in rolled strips a minimum of 6.5 ft wide, a minimum of 80 ft long and a minimum of 0.5 lb/yd². Straw blankets must be secured in place with wire staples. Staples should be made of minimum 11-gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown.
 - **Wood fiber blanket** is composed of biodegradable fiber mulch with extruded plastic netting held together with adhesives. The material is designed to enhance re-vegetation. The material is furnished in rolled strips, which must be secured to the ground with U-shaped staples or stakes in accordance with manufacturers' recommendations.
 - **Coconut fiber blanket** should be a machine produced mat of 100 percent coconut fiber with biodegradable netting on the top and bottom. The coconut fiber should be attached to the netting with biodegradable thread or glue strips. The coconut fiber blanket should be of consistent thickness. The coconut fiber should be evenly distributed over the entire area of the blanket. Coconut fiber blanket should be furnished in rolled strips with a minimum of 6.5 ft wide, a minimum of 80 ft. long and a minimum of 0.5

lb/yd². Coconut fiber blankets must be secured in place with wire staples. Staples should be made of minimum 11-gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown.

- **Coconut fiber mesh** is a thin permeable membrane made from coconut or corn fiber that is spun into a yarn and woven into a biodegradable mat. It is designed to be used in conjunction with vegetation and typically has longevity of several years. The material is supplied in rolled strips, which must be secured to the soil with U-shaped staples or stakes in accordance with manufacturers' recommendations.
- **Straw coconut fiber blanket** should be machine produced mats of 70 percent straw and 30 percent coconut fiber with a biodegradable netting top layer and a biodegradable bottom net. The straw and coconut fiber should be attached to the netting with biodegradable thread or glue strips. The straw coconut fiber blanket should be of consistent thickness. The straw and coconut fiber should be evenly distributed over the entire area of the blanket. Straw coconut fiber blanket should be furnished in rolled strips a minimum of 6.5 ft wide, a minimum of 80 ft long and a minimum of 0.5 lb/yd². Straw coconut fiber blankets must be secured in place with wire staples. Staples should be made of minimum 11-gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown.
- Non-biodegradable RECPs are typically composed of polypropylene, polyethylene, nylon or other synthetic fibers. In some cases, a combination of biodegradable and synthetic fibers is used to construct the RECP. Netting used to hold these fibers together is typically non-biodegradable as well. Only biodegradable RECPs can remain on a site applying for a Notice of Termination due to plastic pollution and wild life concerns (State Waterboard, 2016). RECPs containing plastic that are used on a site must be disposed of for final stabilization.
 - **Plastic netting** is a lightweight biaxially oriented netting designed for securing loose mulches like straw or paper to soil surfaces to establish vegetation. The netting is photodegradable. The netting is supplied in rolled strips, which must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations.
 - **Plastic mesh** is an open weave geotextile that is composed of an extruded synthetic fiber woven into a mesh with an opening size of less than ¹/₄ in. It is used with revegetation or may be used to secure loose fiber such as straw to the ground. The material is supplied in rolled strips, which must be secured to the soil with U-shaped staples or stakes in accordance with manufacturers' recommendations.
 - **Synthetic fiber with netting** is a mat that is composed of durable synthetic fibers treated to resist chemicals and ultraviolet light. The mat is a dense, three-dimensional mesh of synthetic (typically polyolefin) fibers stitched between two polypropylene nets. The mats are designed to be re-vegetated and provide a permanent composite system of soil, roots, and geomatrix. The material is furnished in rolled strips, which must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations.
 - **Bonded synthetic fibers** consist of a three-dimensional geometric nylon (or other synthetic) matting. Typically, it has more than 90 percent open area, which facilitates

root growth. It's tough root reinforcing system anchors vegetation and protects against hydraulic lift and shear forces created by high volume discharges. It can be installed over prepared soil, followed by seeding into the mat. Once vegetated, it becomes an invisible composite system of soil, roots, and geomatrix. The material is furnished in rolled strips that must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations.

- **Combination synthetic and biodegradable RECPs** consist of biodegradable fibers, such as wood fiber or coconut fiber, with a heavy polypropylene net stitched to the top and a high strength continuous filament geomatrix or net stitched to the bottom. The material is designed to enhance re-vegetation. The material is furnished in rolled strips, which must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations.

Site Preparation

- Proper soil preparation is essential to ensure complete contact of the RECP with the soil. Soil Roughening is not recommended in areas where RECPs will be installed.
- Grade and shape the area of installation.
- Remove all rocks, clods, vegetation or other obstructions so that the installed blankets or mats will have complete, direct contact with the soil.
- Prepare seedbed by loosening 2 to 3 in. of topsoil.

Seeding/Planting

Seed the area before blanket installation for erosion control and re-vegetation. Seeding after mat installation is often specified for turf reinforcement application. When seeding prior to blanket installation, all areas disturbed during blanket installation must be re-seeded. Where soil filling is specified for turf reinforcement mats (TRMs), seed the matting and the entire disturbed area after installation and prior to filling the mat with soil.

Fertilize and seed in accordance with seeding specifications or other types of landscaping plans. The protective matting can be laid over areas where grass has been planted and the seedlings have emerged. Where vines or other ground covers are to be planted, lay the protective matting first and then plant through matting according to design of planting.

Check Slots

Check slots shall be installed as required by the manufacturer.

Laying and Securing Matting

- Before laying the matting, all check slots should be installed and the seedbed should be friable, made free from clods, rocks, and roots. The surface should be compacted and finished according to the requirements of the manufacturer's recommendations.
- Mechanical or manual lay down equipment should be capable of handling full rolls of fabric and laying the fabric smoothly without wrinkles or folds. The equipment should meet the fabric manufacturer's recommendations or equivalent standards.

Anchoring

- U-shaped wire staples, metal geotextile stake pins, or triangular wooden stakes can be used to anchor mats and blankets to the ground surface.
- Wire staples should be made of minimum 11-gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown.
- Metal stake pins should be 0.188 in. diameter steel with a 1.5 in. steel washer at the head of the pin, and 8 in. in length.
- Wire staples and metal stakes should be driven flush to the soil surface.

Installation on Slopes

Installation should be in accordance with the manufacturer's recommendations. In general, these will be as follows:

- Begin at the top of the slope and anchor the blanket in a 6 in. deep by 6 in. wide trench. Backfill trench and tamp earth firmly.
- Unroll blanket down slope in the direction of water flow.
- Overlap the edges of adjacent parallel rolls 2 to 3 in. and staple every 3 ft (or greater, per manufacturer's specifications).
- When blankets must be spliced, place blankets end over end (shingle style) with 6 in. overlap. Staple through overlapped area, approximately 12 in. apart.
- Lay blankets loosely and maintain direct contact with the soil. Do not stretch.
- Staple blankets sufficiently to anchor blanket and maintain contact with the soil. Staples should be placed down the center and staggered with the staples placed along the edges. Steep slopes, 1:1 (H:V) to 2:1 (H:V), require a minimum of 2 staples/yd². Moderate slopes, 2:1 (H:V) to 3:1 (H:V), require a minimum of 1 ¹/₂ staples/yd². Check manufacturer's specifications to determine if a higher density staple pattern is required.

Installation in Channels

Installation should be in accordance with the manufacturer's recommendations. In general, these will be as follows:

- Dig initial anchor trench 12 in. deep and 6 in. wide across the channel at the lower end of the project area.
- Excavate intermittent check slots, 6 in. deep and 6 in. wide across the channel at 25 to 30 ft intervals along the channels.
- Cut longitudinal channel anchor trenches 4 in. deep and 4 in. wide along each side of the installation to bury edges of matting, whenever possible extend matting 2 to 3 in. above the crest of the channel side slopes.

- Beginning at the downstream end and in the center of the channel, place the initial end of the first roll in the anchor trench and secure with fastening devices at 12 in. intervals. Note: matting will initially be upside down in anchor trench.
- In the same manner, position adjacent rolls in anchor trench, overlapping the preceding roll a minimum of 3 in.
- Secure these initial ends of mats with anchors at 12 in. intervals, backfill and compact soil.
- Unroll center strip of matting upstream. Stop at next check slot or terminal anchor trench.
 Unroll adjacent mats upstream in similar fashion, maintaining a 3 in. overlap.
- Fold and secure all rolls of matting snugly into all transverse check slots. Lay mat in the bottom of the slot then fold back against itself. Anchor through both layers of mat at 12 in. intervals, then backfill and compact soil. Continue rolling all mat widths upstream to the next check slot or terminal anchor trench.
- Alternate method for non-critical installations: Place two rows of anchors on 6 in. centers at 25 to 30 ft. intervals in lieu of excavated check slots.
- Staple shingled lap spliced ends a minimum of 12 in. apart on 12 in. intervals.
- Place edges of outside mats in previously excavated longitudinal slots; anchor using prescribed staple pattern, backfill, and compact soil.
- Anchor, fill, and compact upstream end of mat in a 12 in. by 6 in. terminal trench.
- Secure mat to ground surface using U-shaped wire staples, geotextile pins, or wooden stakes.
- Seed and fill turf reinforcement matting with soil, if specified.

Soil Filling (if specified for turf reinforcement mat (TRM))

Installation should be in accordance with the manufacturer's recommendations. Typical installation guidelines are as follows:

- After seeding, spread and lightly rake 1/2-3/4 inches of fine topsoil into the TRM apertures to completely fill TRM thickness. Use backside of rake or other flat implement.
- Alternatively, if allowed by product specifications, spread topsoil using lightweight loader, backhoe, or other power equipment. Avoid sharp turns with equipment.
- Always consult the manufacturer's recommendations for installation.
- Do not drive tracked or heavy equipment over mat.
- Avoid any traffic over matting if loose or wet soil conditions exist.
- Use shovels, rakes, or brooms for fine grading and touch up.
- Smooth out soil filling just exposing top netting of mat.

Temporary Soil Stabilization Removal

Temporary soil stabilization removed from the site of the work must be disposed of if necessary.

Costs

Installed costs can be relatively high compared to other BMPs. Approximate costs for installed materials are shown below:

Rolled Erosion Control Products		Installed Cost per Acre
	Jute Mesh	\$7,700-\$9,000
	Curled Wood Fiber	\$10,200-\$13,400
	Straw	\$10,200-\$13,400
Biodegradable	Wood Fiber	\$10,200-\$13,400
	Coconut Fiber	\$16,600-\$18,000
	Coconut Fiber Mesh	\$38,400-\$42,200
	Straw Coconut Fiber	\$12,800-\$15,400
	Plastic Netting	\$2,600-\$2,800
	Plastic Mesh	\$3,800-\$4,500
Non-Biodegradable	Synthetic Fiber with Netting	\$43,500-\$51,200
	Bonded Synthetic Fibers	\$57,600-\$70,400
	Combination with Biodegradable	\$38,400-\$46,100

Source: Cost information received from individual product manufacturers solicited by Geosyntec Consultants (2004). Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

Inspection and Maintenance

- RECPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Areas where erosion is evident shall be repaired and BMPs reapplied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require reapplication of BMPs.
- If washout or breakage occurs, re-install the material after repairing the damage to the slope or channel.
- Make sure matting is uniformly in contact with the soil.
- Check that all the lap joints are secure.
- Check that staples are flush with the ground.

References

CGP Review #2, State Water Resources Control Board, 2014. Available online at: <u>http://www.waterboards.ca.gov/water_issues/programs/stormwater/docs/training/cgp_revie_w_issue2.pdf</u>.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005

Erosion Control Pilot Study Report, State of California Department of Transportation (Caltrans), June 2000.

Guides for Erosion and Sediment Controls in California, USDA Soils Conservation Service, January 1991.

National Management Measures to Control Nonpoint Source Pollution from Urban Areas, United States Environmental Protection Agency, 2002<u>.</u>

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999.

Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992.

Water Quality Management Plan for The Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

- 1. Slope surface shall be free of rocks, clods, sticks and grass. Mats/blankets shall have good soil contact.
- 2. Lay blankets loosely and stake or staple to maintain direct contact with the soil. Do not stretch.
- 3. Install per manufacturer's recommendations

TYPICAL INSTALLATION DETAIL

Geotextiles and Mats

- 2. Staking or stapling layout per manufacturers specifications.
- 3. Install per manufacturer's recommendations

TYPICAL INSTALLATION DETAIL

Wood Mulching

Description and Purpose

Wood mulching consists of applying a mixture of shredded wood mulch or bark to disturbed soils. The primary function of wood mulching is to reduce erosion by protecting bare soil from rainfall impact, increasing infiltration, and reducing runoff.

Suitable Applications

Wood mulching is suitable for disturbed soil areas requiring temporary protection until permanent stabilization is established. Wood mulch may also be used for final stabilization; generally, used in a landscape setting or areas that will have pedestrian traffic.

Limitations

- Best suited to flat areas or gentle slopes or 5:1 (H:V) or flatter. Not suitable for use on slopes steeper than 3:1 (H:V). For slopes steeper than 3:1, consider the use of Compost Blankets (EC-14).
- Wood mulch may introduce unwanted species if it contains seed, although it may also be used to prevent weed growth if it is seed-free.
- Not suitable for areas exposed to concentrated flows.
- If used for temporary stabilization, wood mulch may need to be removed prior to further earthwork.

Categories

EC	Erosion Control	\checkmark
SE	Sediment Control	
тс	Tracking Control	
WE	Wind Erosion Control	×
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	
Legend:		
Primary Objective		

Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

- EC-3 Hydraulic Mulch
- EC-4 Hydroseeding
- EC-5 Soil Binders
- EC-6 Straw Mulch
- EC-7 Geotextiles and Mats

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

Implementation

Mulch Selection

There are many types of mulches. Selection of the appropriate type of mulch should be based on the type of application, site conditions, and compatibility with planned or future uses.

Application Procedures

Prior to application, after existing vegetation has been removed, roughen embankment and fill areas by rolling with a device such as a punching type roller or by track walking. The construction application procedures for mulches vary significantly depending upon the type of mulching method specified. Two methods are highlighted here:

- Green Material: This type of mulch is produced by the recycling of vegetation trimmings such as grass, shredded shrubs, and trees. Chipped brush from on-site vegetation clearing activities may be used (this may require stockpiling and reapplying after earthwork is complete). Methods of application are generally by hand although pneumatic methods are available.
 - Green material can be used as a temporary ground cover with or without seeding.
 - The green material should be evenly distributed on site to a depth of not more than 2 in.
- Shredded Wood: Suitable for ground cover in ornamental or revegetated plantings.
 - Shredded wood/bark is conditionally suitable. See note under limitations.
 - Distribute by hand or use pneumatic methods.
 - Evenly distribute the mulch across the soil surface to a depth of 2 to 3 in.
- Avoid mulch placement onto roads, sidewalks, drainage channels, existing vegetation, etc.

Costs

Assuming a 2-in. layer of wholesale landscaping-grade wood mulch, the average one-time cost for installation may range from \$15,000 - \$23,000 per acre¹. Costs can increase if the source is not close to the project site.

Inspection and Maintenance

- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Areas where erosion is evident shall be repaired and BMPs reapplied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require reapplication of BMPs.

¹ Costs based on estimates provided by the California Department of Transportation's *Soil Stabilization BMP Research for Erosion and Sediment Controls Cost Survey Technical Memorandum*, CTSW-TM-07-172.35.1, July 2007 (available at: <u>http://www.dot.ca.gov/hq/LandArch/16 la design/guidance/estimating/Soil Stabilization Pricing.pdf</u>) and adjusted for inflation from 1997 to 2016.

- Regardless of the mulching technique selected, the key consideration in inspection and maintenance is that the mulch needs to last long enough to achieve erosion control objectives. If the mulch is applied as a stand-alone erosion control method over disturbed areas (without seed), it should last the length of time the site will remain barren or until final re-grading and revegetation.
- Where vegetation is not the ultimate cover, such as ornamental and landscape applications of bark or wood chips, inspection and maintenance should focus on longevity and integrity of the mulch.
- Reapply mulch when bare earth becomes visible.

References

Controlling Erosion of Construction Sites Agriculture Information Bulletin #347, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) (formerly Soil Conservation Service – SCS).

Guides for Erosion and Sediment Control in California, USDA Soils Conservation Service, January 1991.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Proposed Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters, Work Group Working Paper, USEPA, April 1992.

Sedimentation and Erosion Control, An Inventory of Current Practices Draft, U.S. EPA, April 1990.

Soil Erosion by Water Agricultural Information Bulletin #513, U.S. Department of Agriculture, Soil Conservation Service.

Soil Stabilization BMP Research for Erosion and Sediment Controls Cost Survey Technical Memorandum, CTSW-TM-07-172.35.1, California Department of Transportation (Caltrans), July 2007. Available online at:

http://www.dot.ca.gov/hq/LandArch/16 la design/guidance/estimating/Soil Stabilization P ricing.pdf.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

Velocity Dissipation Devices

Description and Purpose

Outlet protection is a physical device composed of rock, grouted riprap, or concrete rubble, which is placed at the outlet of a pipe or channel to prevent scour of the soil caused by concentrated, high velocity flows.

Suitable Applications

Whenever discharge velocities and energies at the outlets of culverts, conduits, or channels are sufficient to erode the next downstream reach. This includes temporary diversion structures to divert runon during construction.

- These devices may be used at the following locations:
 - Outlets of pipes, drains, culverts, slope drains, diversion ditches, swales, conduits, or channels.
 - Outlets located at the bottom of mild to steep slopes.
 - Discharge outlets that carry continuous flows of water.
 - Outlets subject to short, intense flows of water, such as flash floods.
 - Points where lined conveyances discharge to unlined conveyances

Limitations

• Large storms or high flows can wash away the rock outlet protection and leave the area susceptible to erosion.

Categories

EC	Erosion Control	$\overline{\mathbf{V}}$	
SE	Sediment Control		
тс	Tracking Control		
WE	Wind Erosion Control		
NS	Non-Stormwater		
	Management Control		
WM	Waste Management and		
	Materials Pollution Control		
Legend:			
\checkmark	Primary Objective		
_			

Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- Sediment captured by the rock outlet protection may be difficult to remove without removing the rock.
- Outlet protection may negatively impact the channel habitat.
- Grouted riprap may break up in areas of freeze and thaw.
- If there is not adequate drainage, and water builds up behind grouted riprap, it may cause the grouted riprap to break up due to the resulting hydrostatic pressure.
- Sediment accumulation, scour depressions, and/or persistent non-stormwater discharges can result in areas of standing water suitable for mosquito production in velocity dissipation devices.

Implementation

General

Outlet protection is needed where discharge velocities and energies at the outlets of culverts, conduits or channels are sufficient to erode the immediate downstream reach. This practice protects the outlet from developing small eroded pools (plange pools) and protects against gully erosion resulting from scouring at a culvert mouth.

Design and Layout

As with most channel design projects, depth of flow, roughness, gradient, side slopes, discharge rate, and velocity should be considered in the outlet design. Compliance to local and state regulations should also be considered while working in environmentally sensitive streambeds. General recommendations for rock size and length of outlet protection mat are shown in the rock outlet protection figure in this BMP and should be considered minimums. The apron length and rock size gradation are determined using a combination of the discharge pipe diameter and estimate discharge rate: Select the longest apron length and largest rock size suggested by the pipe size and discharge rate. Where flows are conveyed in open channels such as ditches and swales, use the estimated discharge rate for selecting the apron length and rock size. Flows should be same as the culvert or channel design flow but never the less than the peak 5-year flow for temporary structures planned for one rainy season, or the 10-year peak flow for temporary structures planned for two or three rainy seasons.

- There are many types of energy dissipaters, with rock being the one that is represented in the attached figure.
- Best results are obtained when sound, durable, and angular rock is used.
- Install riprap, grouted riprap, or concrete apron at selected outlet. Riprap aprons are best suited for temporary use during construction. Grouted or wired tied rock riprap can minimize maintenance requirements.
- Rock outlet protection is usually less expensive and easier to install than concrete aprons or energy dissipaters. It also serves to trap sediment and reduce flow velocities.
- Carefully place riprap to avoid damaging the filter fabric.

- Stone 4 in. to 6 in. may be carefully dumped onto filter fabric from a height not to exceed 12 in.
- Stone 8 in. to 12 in. must be hand placed onto filter fabric, or the filter fabric may be covered with 4 in. of gravel and the 8 in. to 12 in. rock may be dumped from a height not to exceed 16 in.
- Stone greater than 12 in. shall only be dumped onto filter fabric protected with a layer of gravel with a thickness equal to one half the D_{50} rock size, and the dump height limited to twice the depth of the gravel protection layer thickness.
- For proper operation of apron: Align apron with receiving stream and keep straight throughout its length. If a curve is needed to fit site conditions, place it in upper section of apron.
- Outlets on slopes steeper than 10 percent should have additional protection.

Costs

Costs are low if material is readily available. If material is imported, costs will be higher. Average installed cost is \$250 per device.

Inspection and Maintenance

- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subjected to non-stormwater discharges daily while non-stormwater discharges occur. Minimize areas of standing water by removing sediment blockages and filling scour depressions.
- Inspect apron for displacement of the riprap and damage to the underlying fabric. Repair fabric and replace riprap that has washed away. If riprap continues to wash away, consider using larger material.
- Inspect for scour beneath the riprap and around the outlet. Repair damage to slopes or underlying filter fabric immediately.
- Temporary devices should be completely removed as soon as the surrounding drainage area has been stabilized or at the completion of construction.

References

County of Sacramento Improvement Standards, Sacramento County, May 1989.

Erosion and Sediment Control Handbook, S.J. Goldman, K. Jackson, T.A. Bursztynsky, P.E., McGraw Hill Book Company, 1986.

Handbook of Steel Drainage & Highway Construction, American Iron and Steel Institute, 1983.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Metzger, M.E. 2004. Managing mosquitoes in stormwater treatment devices. University of California Division of Agriculture and Natural Resources, Publication 8125. On-line: http://anrcatalog.ucdavis.edu/pdf/8125.pdf

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, state of California Department of Transportation (Caltrans), November 2000.

Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

SECTION A-A

Pipe Diameter inches	Discharge ft³/s	Apron Length, La ft	Rip Rap D ₅₀ Diameter Min inches
10	5	10	4
12	10	13	6
	10	10	6
19	20	16	8
18	30	23	12
	40	26	16
	30	16	8
24	40	26	8
24	50	26	12
	60	30	16

For larger or higher flows consult a Registered Civil Engineer Source: USDA - SCS
Silt Fence

Description and Purpose

A silt fence is made of a woven geotextile that has been entrenched, attached to supporting poles, and sometimes backed by a plastic or wire mesh for support. The silt fence detains water, promoting sedimentation of coarse sediment behind the fence. Silt fence does not retain soil fine particles like clays or silts.

Suitable Applications

Silt fences are suitable for perimeter control, placed below areas where sheet flows discharge from the site. They could also be used as interior controls below disturbed areas where runoff may occur in the form of sheet and rill erosion and around inlets within disturbed areas (Storm Drain Inlet Protection, SE-10). Silt fences should not be used in locations where the flow is concentrated. Silt fences should always be used in combination with erosion controls. Suitable applications include:

- At perimeter of a project (although they should not be installed up and down slopes).
- Below the toe or down slope of exposed and erodible slopes.
- Along streams and channels.
- Around temporary spoil areas and stockpiles.
- Around inlets.
- Below other small cleared areas.

Categories

= 0	E 1 A 1 I	
EC	Erosion Control	
SE	Sediment Control	\checkmark
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	
Legend:		
\checkmark	Primary Category	
×	Secondary Category	

Targeted Constituents

Sediment (coarse sediment)	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

SE-5 Fiber Rolls

SE-6 Gravel Bag Berm SE-12 Manufactured Linear Sediment Controls SE-13 Compost Socks and Berms SE-14 Biofilter Bags

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

Limitations

- Do not use in streams, channels, drain inlets, or anywhere flow is concentrated.
- Do not use in locations where ponded water may cause a flooding hazard.
- Do not use silt fence to divert water flows or place across any contour line.
- Improperly installed fences are subject to failure from undercutting, overtopping, or collapsing.
- Must be trenched and keyed in.
- According to the State Water Board's *CGP Review, Issue #2* (2014), silt fences reinforced with metal or plastic mesh should be avoided due to plastic pollution and wildlife concerns.
- Not intended for use as a substitute for Fiber Rolls (SE-5), when fiber rolls are being used as a slope interruption device.
- Do not use on slopes subject to creeping, slumping, or landslides.

Implementation

General

A silt fence is a temporary sediment barrier consisting of woven geotextile stretched across and attached to supporting posts, trenched-in, and, depending upon the strength of fabric used, supported with plastic or wire mesh fence. Silt fences trap coarse sediment by intercepting and detaining sediment-laden runoff from disturbed areas in order to promote sedimentation behind the fence.

The following layout and installation guidance can improve performance and should be followed:

- Silt fence should be used in combination with erosion controls up-slope in order to provide the most effective sediment control.
- Silt fence alone is not effective at reducing turbidity. (Barrett and Malina, 2004)
- Designers should consider diverting sediment laden water to a temporary sediment basin or trap. (EPA, 2012)
- Use principally in areas where sheet flow occurs.
- Install along a level contour, so water does not pond more than 1.5 ft. at any point along the silt fence.
- Provide sufficient room for runoff to pond behind the fence and to allow sediment removal equipment to pass between the silt fence and toes of slopes or other obstructions. About 1200 ft.² of ponding area should be provided for every acre draining to the fence.
- Efficiency of silt fences is primarily dependent on the detention time of the runoff behind the control. (Barrett and Malina, 2004)

- The drainage area above any fence should not exceed a quarter of an acre. (Rule of Thumb-100-feet of silt fence per 10,000 ft.² of disturbed area.) (EPA, 2012)
- The maximum length of slope draining to any point along the silt fence should be 100 ft. per ft of silt fence.
- Turn the ends of the filter fence uphill to prevent stormwater from flowing around the fence.
- Leave an undisturbed or stabilized area immediately down slope from the fence where feasible.
- Silt fences should remain in place until the disturbed area draining to the silt fence is permanently stabilized, after which, the silt fence fabric and posts should be removed and properly disposed.
- J-hooks, which have ends turning up the slope to break up long runs of fence and provide multiple storage areas that work like mini-retention areas, may be used to increase the effectiveness of silt fence.
- Be aware of local regulations regarding the type and installation requirements of silt fence, which may differ from those presented in this fact sheet.

Design and Layout

In areas where high winds are anticipated the fence should be supported by a plastic or wire mesh. The geotextile fabric of the silt fence should contain ultraviolet inhibitors and stabilizers to provide longevity equivalent to the project life or replacement schedule.

- Layout in accordance with the attached figures.
- For slopes that contain a high number of rocks or large dirt clods that tend to dislodge, it may be necessary to protect silt fence from rocks (e.g., rockfall netting) ensure the integrity of the silt fence installation.

Standard vs. Heavy Duty Silt Fence

Standard Silt Fence

• Generally applicable in cases where the area draining to fence produces moderate sediment loads.

Heavy Duty Silt Fence

- Heavy duty silt fence usually has 1 or more of the following characteristics, not possessed by standard silt fence.
 - Fabric is reinforced with wire backing or additional support.
 - Posts are spaced closer than pre-manufactured, standard silt fence products.
- Use is generally limited to areas affected by high winds.
- Area draining to fence produces moderate sediment loads.

Materials

Standard Silt Fence

• Silt fence material should be woven geotextile with a minimum width of 36 in. The fabric should conform to the requirements in ASTM designation D6461.

- Wooden stakes should be commercial quality lumber of the size and shape shown on the plans. Each stake should be free from decay, splits or cracks longer than the thickness of the stake or other defects that would weaken the stakes and cause the stakes to be structurally unsuitable.
- Staples used to fasten the fence fabric to the stakes should be not less than 1.75 in. long and should be fabricated from 15-gauge or heavier wire. The wire used to fasten the tops of the stakes together when joining two sections of fence should be 9 gauge or heavier wire. Galvanizing of the fastening wire will not be required.

Heavy-Duty Silt Fence

• Some silt fence has a wire backing to provide additional support, and there are products that may use prefabricated plastic holders for the silt fence and use metal posts instead of wood stakes.

Installation Guidelines – Traditional Method

Silt fences are to be constructed on a level contour. Sufficient area should exist behind the fence for ponding to occur without flooding or overtopping the fence.

- A trench should be excavated approximately 6 in. wide and 6 in. deep along the line of the proposed silt fence (trenches should not be excavated wider or deeper than necessary for proper silt fence installation).
- Bottom of the silt fence should be keyed-in a minimum of 12 in.
- Posts should be spaced a maximum of 6 ft. apart and driven securely into the ground a minimum of 18 in. or 12 in. below the bottom of the trench.
- When standard strength geotextile is used, a plastic or wire mesh support fence should be fastened securely to the upslope side of posts using heavy-duty wire staples at least 1 in. long. The mesh should extend into the trench.
- When extra-strength geotextile and closer post spacing are used, the mesh support fence may be eliminated.
- Woven geotextile should be purchased in a long roll, then cut to the length of the barrier.
 When joints are necessary, geotextile should be spliced together only at a support post, with a minimum 6 in. overlap and both ends securely fastened to the post.
- The trench should be backfilled with native material and compacted.
- Construct the length of each reach so that the change in base elevation along the reach does not exceed 1/3 the height of the barrier; in no case should the reach exceed 500 ft.
- Cross barriers should be a minimum of 1/3 and a maximum of 1/2 the height of the linear barrier.
- See typical installation details at the end of this fact sheet.

Installation Guidelines - Static Slicing Method

- Static Slicing is defined as insertion of a narrow blade pulled behind a tractor, similar to a
 plow blade, at least 10 in. into the soil while at the same time pulling silt geotextile fabric
 into the ground through the opening created by the blade to the depth of the blade. Once the
 geotextile is installed, the soil is compacted using tractor tires.
- This method will not work with pre-fabricated, wire backed silt fence.
- Benefits:
 - Ease of installation (most often done with a 2-person crew).
 - Minimal soil disturbance.
 - Better level of compaction along fence, less susceptible to undercutting
 - Uniform installation.
- Limitations:
 - Does not work in shallow or rocky soils.
 - Complete removal of geotextile material after use is difficult.
 - Be cautious when digging near potential underground utilities.

Costs

- It should be noted that costs vary greatly across regions due to available supplies and labor costs.
- Average annual cost for installation using the traditional silt fence installation method (assumes 6 month useful life) is \$7 per linear foot based on vendor research. Range of cost is \$3.50 - \$9.10 per linear foot.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Repair undercut silt fences.
- Repair or replace split, torn, slumping, or weathered fabric. The lifespan of silt fence fabric is generally 5 to 8 months.
- Silt fences that are damaged and become unsuitable for the intended purpose should be removed from the site of work, disposed, and replaced with new silt fence barriers.
- Sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches 1/3 of the barrier height.

- Silt fences should be left in place until the upgradient area is permanently stabilized. Until then, the silt fence should be inspected and maintained regularly.
- Remove silt fence when upgradient areas are stabilized. Fill and compact post holes and anchor trench, remove sediment accumulation, grade fence alignment to blend with adjacent ground, and stabilize disturbed area.

References

CGP Review #2, State Water Resources Control Board, 2014. Available online at: http://www.waterboards.ca.gov/water_issues/programs/stormwater/docs/training/cgp_revie w_issue2.pdf.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Monitoring Data on Effectiveness of Sediment Control Techniques, Proceedings of World Water and Environmental Resources Congress, Barrett M. and Malina J. 2004.

National Management Measures to Control Nonpoint Source Pollution from Urban Areas, United States Environmental Protection Agency, 2002.

Proposed Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters, Work Group-Working Paper, USEPA, April 1992.

Sedimentation and Erosion Control Practices, and Inventory of Current Practices (Draft), USEPA, 1990.

Southeastern Wisconsin Regional Planning Commission (SWRPC). Costs of Urban Nonpoint Source Water Pollution Control Measures. Technical Report No. 31. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI. 1991.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management Manual for The Puget Sound Basin, Washington State Department of Ecology, Public Review Draft, 1991.

U.S. Environmental Protection Agency (USEPA). Stormwater Best Management Practices: Silt Fences. U.S. Environmental Protection Agency, Office of Water, Washington, DC, 2012.

U.S. Environmental Protection Agency (USEPA). Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Office of Water, Washington, DC, 1992.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

Soil Stabilization BMP Research for Erosion and Sediment Controls: Cost Survey Technical Memorandum, State of California Department of Transportation (Caltrans), July 2007.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

Silt Fence

CASQA Stormwater BMP Handbook Construction www.casqa.org

9 of 10

Plan

J-HOOK

Fiber Rolls

Description and Purpose

A fiber roll (also known as wattles or logs) consists of straw, coir, curled wood fiber, or other biodegradable materials bound into a tight tubular roll wrapped by plastic netting, which can be photodegradable, or natural fiber, such as jute, cotton, or sisal. Additionally, gravel core fiber rolls are available, which contain an imbedded ballast material such as gravel or sand for additional weight when staking the rolls are not feasible (such as use as inlet protection). When fiber rolls are placed at the toe and on the face of slopes along the contours, they intercept runoff, reduce its flow velocity, release the runoff as sheet flow, and provide removal of sediment from the runoff (through sedimentation). By interrupting the length of a slope, fiber rolls can also reduce sheet and rill erosion until vegetation is established.

Suitable Applications

Fiber rolls may be suitable:

- Along the toe, top, face, and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.
- At the end of a downward slope where it transitions to a steeper slope.
- Along the perimeter of a project.
- As check dams in unlined ditches with minimal grade.
- Down-slope of exposed soil areas.

Categories

EC	Erosion Control	×
SE	Sediment Control	\checkmark
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	
Legend:		
\checkmark	Primary Category	
×	Secondary Category	

Targeted Constituents

Sediment	V
Nutrients	
Trash	
Metals	
Bacteria	

Oil and Grease Organics

Potential Alternatives

SE-1 Silt Fence

SE-6 Gravel Bag Berm

SE-8 Sandbag Barrier

SE-12 Manufactured Linear Sediment Controls

SE-14 Biofilter Bags

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not

appear on the modified version.

- At operational storm drains as a form of inlet protection.
- Around temporary stockpiles.

Limitations

- Fiber rolls should be used in conjunction with erosion control, such as hydroseed, RECPs, etc.
- Only biodegradable fiber rolls containing no plastic can remain on a site applying for a Notice of Termination due to plastic pollution and wildlife concerns (State Water Board, 2016). Fiber rolls containing plastic that are used on a site must be disposed of for final stabilization.
- Fiber rolls are not effective unless trenched in and staked. If not properly staked and trenched in, fiber rolls will not work as intended and could be transported by high flows.
- Not intended for use in high flow situations (i.e., for concentrated flows).
- Difficult to move once saturated.
- Fiber rolls have a limited sediment capture zone.
- Fiber rolls should not be used on slopes subject to creep, slumping, or landslide.
- Rolls typically function for 12-24 months, depending upon local conditions and roll material.

Implementation

Fiber Roll Materials

- Fiber rolls should be prefabricated.
- Fiber rolls may come manufactured containing polyacrylamide (PAM), a flocculating agent within the roll. Fiber rolls impregnated with PAM provide additional sediment removal capabilities and should be used in areas with fine, clayey or silty soils to provide additional sediment removal capabilities. Monitoring may be required for these installations.
- Fiber rolls are made from weed-free rice straw, flax, curled wood fiber, or coir bound into a tight tubular roll by netting or natural fiber (see *Limitations* above regarding plastic netting).
- Typical fiber rolls vary in diameter from 6 in. to 20 in. Larger diameter rolls are available as well. The larger the roll, the higher the sediment retention capacity.
- Typical fiber rolls lengths are 4, 10, 20 and 25 ft., although other lengths are likely available.

Installation

- Locate fiber rolls on level contours spaced as follows:
 - Slope inclination of 4:1 (H:V) or flatter: Fiber rolls should be placed at a maximum interval of 20 ft.

- Slope inclination between 4:1 and 2:1 (H:V): Fiber Rolls should be placed at a maximum interval of 15 ft. (a closer spacing is more effective).
- Slope inclination 2:1 (H:V) or greater: Fiber Rolls should be placed at a maximum interval of 10 ft. (a closer spacing is more effective).
- Prepare the slope before beginning installation.
- Dig small trenches across the slope on the contour. The trench depth should be ¼ to 1/3 of the thickness of the roll, and the width should equal the roll diameter, in order to provide area to backfill the trench.
- It is critical that rolls are installed perpendicular to water movement, and parallel to the slope contour.
- Start building trenches and installing rolls from the bottom of the slope and work up.
- It is recommended that pilot holes be driven through the fiber roll. Use a straight bar to drive holes through the roll and into the soil for the wooden stakes.
- Turn the ends of the fiber roll up slope to prevent runoff from going around the roll.
- Stake fiber rolls into the trench.
 - Drive stakes at the end of each fiber roll and spaced 4 ft maximum on center.
 - Use wood stakes with a nominal classification of 0.75 by 0.75 in. and minimum length of 24 in.
- If more than one fiber roll is placed in a row, the rolls should be overlapped, not abutted.
- See typical fiber roll installation details at the end of this fact sheet.

Removal

- Fiber rolls can be left in place or removed depending on the type of fiber roll and application (temporary vs. permanent installation). Fiber rolls encased with plastic netting or containing any plastic material will need to be removed from the site for final stabilization. Fiber rolls used in a permanent application are to be encased with a non-plastic material and are left in place. Removal of a fiber roll used in a permanent application can result in greater disturbance; therefore, during the BMP planning phase, the areas where fiber rolls will be used on final slopes, only fiber rolls wrapped in non-plastic material should be selected.
- Temporary installations should only be removed when up gradient areas are stabilized per General Permit requirements, and/or pollutant sources no longer present a hazard. But they should also be removed before vegetation becomes too mature so that the removal process does not disturb more soil and vegetation than is necessary.

Costs

Material costs for straw fiber rolls range from 26 - 38 per 25-ft. roll¹ and curled wood fiber rolls range from 30 - 40 per roll².

Material costs for PAM impregnated fiber rolls range between 9.00-12.00 per linear foot, based upon vendor research¹.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Repair or replace split, torn, unraveling, or slumping fiber rolls.
- If the fiber roll is used as a sediment capture device, or as an erosion control device to maintain sheet flows, sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when sediment accumulation reaches one-third the designated sediment storage depth.
- If fiber rolls are used for erosion control, such as in a check dam, sediment removal should not be required as long as the system continues to control the grade. Sediment control BMPs will likely be required in conjunction with this type of application.
- Repair any rills or gullies promptly.

References

General Construction – Frequently Asked Questions, Storm Water Program website, State Water Resources Control Board, 2009 updated in 2016. Available online at: http://www.waterboards.ca.gov/water_issues/programs/stormwater/gen_const_faq.shtml.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

¹ Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

² Costs estimated based on vendor query by Tetra Tech, Inc. 2016.

ENTRENCHMENT DETAIL N.T.S.

Gravel Bag Berm

Description and Purpose

A gravel bag berm is a series of gravel-filled bags placed on a level contour to intercept sheet flows. Gravel bags pond sheet flow runoff, allowing sediment to settle out, and release runoff slowly as sheet flow, preventing erosion.

Suitable Applications

Gravel bag berms may be suitable:

- As a linear sediment control measure:
 - Below the toe of slopes and erodible slopes
 - As sediment traps at culvert/pipe outlets
 - Below other small cleared areas
 - Along the perimeter of a site
 - Down slope of exposed soil areas
 - Around temporary stockpiles and spoil areas
 - Parallel to a roadway to keep sediment off paved areas
 - Along streams and channels
- As a linear erosion control measure:
 - Along the face and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.

Categories

EC	Erosion Control	×
SE	Sediment Control	\checkmark
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater	
	Management Control	
WM	Waste Management and	
	Materials Pollution Control	
Legend:		
\checkmark	Primary Category	

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

SE-1 Silt Fence SE-5 Fiber Roll SE-8 Sandbag Barrier SE-12 Temporary Silt Dike SE-14 Biofilter Bags

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- At the top of slopes to divert runoff away from disturbed slopes.
- As chevrons (small check dams) across mildly sloped construction roads. For use check dam use in channels, see SE-4, Check Dams.

Limitations

- Gravel berms may be difficult to remove.
- Removal problems limit their usefulness in landscaped areas.
- Gravel bag berm may not be appropriate for drainage areas greater than 5 acres.
- Runoff will pond upstream of the berm, possibly causing flooding if sufficient space does not exist.
- Degraded gravel bags may rupture when removed, spilling contents.
- Installation can be labor intensive.
- Durability of gravel bags is somewhat limited, and bags may need to be replaced when installation is required for longer than 6 months.
- Easily damaged by construction equipment.
- When used to detain concentrated flows, maintenance requirements increase.

Implementation

General

A gravel bag berm consists of a row of open graded gravel-filled bags placed on a level contour. When appropriately placed, a gravel bag berm intercepts and slows sheet flow runoff, causing temporary ponding. The temporary ponding allows sediment to settle. The open graded gravel in the bags is porous, which allows the ponded runoff to flow slowly through the bags, releasing the runoff as sheet flows. Gravel bag berms also interrupt the slope length and thereby reduce erosion by reducing the tendency of sheet flows to concentrate into rivulets, which erode rills, and ultimately gullies, into disturbed, sloped soils. Gravel bag berms are similar to sand bag barriers but are more porous. Generally, gravel bag berms should be used in conjunction with temporary soil stabilization controls up slope to provide effective erosion and sediment control.

Design and Layout

- Locate gravel bag berms on level contours.
- When used for slope interruption, the following slope/sheet flow length combinations apply:
 - Slope inclination of 4:1 (H:V) or flatter: Gravel bags should be placed at a maximum interval of 20 ft, with the first row near the slope toe.
 - Slope inclination between 4:1 and 2:1 (H:V): Gravel bags should be placed at a maximum interval of 15 ft. (a closer spacing is more effective), with the first row near the slope toe.

Slope inclination 2:1 (H:V) or greater: Gravel bags should be placed at a maximum interval of 10 ft. (a closer spacing is more effective), with the first row near the slope toe.

- Turn the ends of the gravel bag barriers up slope to prevent runoff from going around the berm.
- Allow sufficient space up slope from the gravel bag berm to allow ponding, and to provide room for sediment storage.
- For installation near the toe of the slope, gravel bag barriers should be set back from the slope toe to facilitate cleaning. Where specific site conditions do not allow for a set-back, the gravel bag barrier may be constructed on the toe of the slope. To prevent flows behind the barrier, bags can be placed perpendicular to a berm to serve as cross barriers.
- Drainage area should not exceed 5 acres.
- In Non-Traffic Areas:
 - Height = 18 in. maximum
 - Top width = 24 in. minimum for three or more-layer construction
 - Top width = 12 in. minimum for one- or two-layer construction
 - Side slopes = 2:1 (H:V) or flatter
- In Construction Traffic Areas:
 - Height = 12 in. maximum
 - Top width = 24 in. minimum for three or more-layer construction.
 - Top width = 12 in. minimum for one- or two-layer construction.
 - Side slopes = 2:1 (H:V) or flatter.
- Butt ends of bags tightly.
- On multiple row, or multiple layer construction, overlap butt joints of adjacent row and row beneath.
- Use a pyramid approach when stacking bags.

Materials

Bag Material: Bags should be woven polypropylene, polyethylene or polyamide fabric or burlap, minimum unit weight of 4 ounces/yd², Mullen burst strength exceeding 300 lb/in² in conformance with the requirements in ASTM designation D3786, and ultraviolet stability exceeding 70% in conformance with the requirements in ASTM designation D4355.

- Bag Size: Each gravel-filled bag should have a length of 18 in., width of 12 in., thickness of 3 in., and mass of approximately 33 lbs. Bag dimensions are nominal and may vary based on locally available materials.
- *Fill Material:* Fill material should be 0.5 to 1 in. Crushed rock, clean and free from clay, organic matter, and other deleterious material, or other suitable open graded, non-cohesive, porous gravel.

Costs

Material costs for gravel bags are average and are dependent upon material availability. \$3.20-\$3.80 per filled gravel bag is standard based upon vendor research (Adjusted for inflation, 2016 dollars, by Tetra Tech, Inc.).

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Gravel bags exposed to sunlight will need to be replaced every two to three months due to degrading of the bags.
- Reshape or replace gravel bags as needed.
- Repair washouts or other damage as needed.
- Sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height.
- Remove gravel bag berms when no longer needed and recycle gravel fill whenever possible and properly dispose of bag material. Remove sediment accumulation and clean, re-grade, and stabilize the area.

References

Handbook of Steel Drainage and Highway Construction, American Iron and Steel Institute, 1983.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Pollution Plan Handbook, First Edition, State of California, Department of Transportation Division of New Technology, Materials and Research, October 1992.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

Street Sweeping and Vacuuming

Description and Purpose

Street sweeping and vacuuming includes use of self-propelled and walk-behind equipment to remove sediment from streets and roadways and to clean paved surfaces in preparation for final paving. Sweeping and vacuuming prevents sediment from the project site from entering storm drains or receiving waters.

Suitable Applications

Sweeping and vacuuming are suitable anywhere sediment is tracked from the project site onto public or private paved streets and roads, typically at points of egress. Sweeping and vacuuming are also applicable during preparation of paved surfaces for final paving.

Limitations

- Sweeping and vacuuming may not be effective when sediment is wet or when tracked soil is caked (caked soil may need to be scraped loose).
- Sweeping may be less effective for fine particle soils (i.e., clay).

Implementation

- Controlling the number of points where vehicles can leave the site will allow sweeping and vacuuming efforts to be focused and perhaps save money.
- Inspect potential sediment tracking locations daily.

Categories

EC	Erosion Control	
SE	Sediment Control	×
тс	Tracking Control	\checkmark
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	
Legend:		
\checkmark	Primary Objective	

Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	\checkmark
Metals	
Bacteria	
Oil and Grease	\checkmark
Organics	

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- Visible sediment tracking should be swept or vacuumed on a daily basis.
- Do not use kick brooms or sweeper attachments. These tend to spread the dirt rather than remove it.
- If not mixed with debris or trash, consider incorporating the removed sediment back into the project

Costs

Rental rates for self-propelled sweepers vary depending on hopper size and duration of rental. Expect rental rates from \$ 650/day to \$2,500/day¹, plus operator costs. Hourly production rates vary with the amount of area to be swept and amount of sediment. Match the hopper size to the area and expect sediment load to minimize time spent dumping.

Inspection and Maintenance

- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- When actively in use, points of ingress and egress must be inspected daily.
- When tracked or spilled sediment is observed outside the construction limits, it must be removed at least daily. More frequent removal, even continuous removal, may be required in some jurisdictions.
- Be careful not to sweep up any unknown substance or any object that may be potentially hazardous.
- Adjust brooms frequently; maximize efficiency of sweeping operations.
- After sweeping is finished, properly dispose of sweeper wastes at an approved dumpsite.

References

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

¹ Based on contractor query conducted by Tetra Tech, Inc. November 2016.

Sandbag Barrier

Description and Purpose

A sandbag barrier is a series of sand-filled bags placed on a level contour to intercept or to divert sheet flows. Sandbag barriers placed on a level contour pond sheet flow runoff, allowing sediment to settle out.

Suitable Applications

Sandbag barriers may be a suitable control measure for the applications described below. It is important to consider that sand bags are less porous than gravel bags and ponding or flooding can occur behind the barrier. Also, sand is easily transported by runoff if bags are damaged or ruptured. The SWPPP Preparer should select the location of a sandbag barrier with respect to the potential for flooding, damage, and the ability to maintain the BMP.

- As a linear sediment control measure:
 - Below the toe of slopes and erodible slopes.
 - As sediment traps at culvert/pipe outlets.
 - Below other small cleared areas.
 - Along the perimeter of a site.
 - Down slope of exposed soil areas.
 - Around temporary stockpiles and spoil areas.
 - Parallel to a roadway to keep sediment off paved areas.
 - Along streams and channels.

Categories

EC	Erosion Control	×
SE	Sediment Control	\checkmark
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater	
	Management Control	
WM	Waste Management and	
	Materials Pollution Control	
Legend:		
$\mathbf{\nabla}$	Primary Category	

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

SE-1 Silt Fence

SE-5 Fiber Rolls

SE-6 Gravel Bag Berm

SE-12 Manufactured Linear Sediment Controls

SE-14 Biofilter Bags

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- As linear erosion control measure:
 - Along the face and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.
 - At the top of slopes to divert runoff away from disturbed slopes.
 - As check dams across mildly sloped construction roads.

Limitations

- It is necessary to limit the drainage area upstream of the barrier to 5 acres.
- Sandbags are not intended to be used as filtration devices.
- Easily damaged by construction equipment.
- Degraded sandbags may rupture when removed, spilling sand.
- Installation can be labor intensive.
- Durability of sandbags is somewhat limited, and bags will need to be replaced when there
 are signs of damage or wear.
- Burlap should not be used for sandbags.

Implementation

General

A sandbag barrier consists of a row of sand-filled bags placed on a level contour. When appropriately placed, a sandbag barrier intercepts and slows sheet flow runoff, causing temporary ponding. The temporary ponding allows sediment to settle. Sand-filled bags have limited porosity, which is further limited as the fine sand tends to quickly plug with sediment, limiting or completely blocking the rate of flow through the barrier. If a porous barrier is desired, consider SE-1, Silt Fence, SE-5, Fiber Rolls, SE-6, Gravel Bag Berms or SE-14, Biofilter Bags. Sandbag barriers also interrupt the slope length and thereby reduce erosion by reducing the tendency of sheet flows to concentrate into rivulets which erode rills, and ultimately gullies, into disturbed, sloped soils. Sandbag barriers are similar to gravel bag berms, but less porous. Generally, sandbag barriers should be used in conjunction with temporary soil stabilization controls up slope to provide effective erosion and sediment control.

Design and Layout

- Locate sandbag barriers on a level contour.
- When used for slope interruption, the following slope/sheet flow length combinations apply:
 - Slope inclination of 4:1 (H:V) or flatter: Sandbags should be placed at a maximum interval of 20 ft, with the first row near the slope toe.
 - Slope inclination between 4:1 and 2:1 (H:V): Sandbags should be placed at a maximum interval of 15 ft. (a closer spacing is more effective), with the first row near the slope toe.

- Slope inclination 2:1 (H:V) or greater: Sandbags should be placed at a maximum interval of 10 ft. (a closer spacing is more effective), with the first row near the slope toe.
- Turn the ends of the sandbag barrier up slope to prevent runoff from going around the barrier.
- Allow sufficient space up slope from the barrier to allow ponding, and to provide room for sediment storage.
- For installation near the toe of the slope, sand bag barriers should be set back from the slope toe to facilitate cleaning. Where specific site conditions do not allow for a set-back, the sand bag barrier may be constructed on the toe of the slope. To prevent flows behind the barrier, bags can be placed perpendicular to a berm to serve as cross barriers.
- Drainage area should not exceed 5 acres.
- Butt ends of bags tightly.
- Overlap butt joints of row beneath with each successive row.
- Use a pyramid approach when stacking bags.
- In non-traffic areas
 - Height = 18 in. maximum
 - Top width = 24 in. minimum for three or more-layer construction
 - Side slope = 2:1 (H:V) or flatter
- In construction traffic areas
 - Height = 12 in. maximum
 - Top width = 24 in. minimum for three or more-layer construction.
 - Side slopes = 2:1 (H:V) or flatter.
- See typical sandbag barrier installation details at the end of this fact sheet.

Materials

- **Sandbag Material:** Sandbag should be woven polypropylene, polyethylene or polyamide fabric, minimum unit weight of 4 ounces/yd², Mullen burst strength exceeding 300 lb/in² in conformance with the requirements in ASTM designation D3786, and ultraviolet stability exceeding 70% in conformance with the requirements in ASTM designation D4355. Use of burlap is not an acceptable substitute, as sand can more easily mobilize out of burlap.
- **Sandbag Size:** Each sand-filled bag should have a length of 18 in., width of 12 in., thickness of 3 in., and mass of approximately 33 lbs. Bag dimensions are nominal and may vary based on locally available materials.

• *Fill Material:* All sandbag fill material should be non-cohesive, Class 3 (Caltrans Standard Specification, Section 25) or similar permeable material free from clay and deleterious material, such as recycled concrete or asphalt.

Costs

Empty sandbags cost 0.25 - 0.75. Average cost of fill material is 8 per yd^3 . Additional labor is required to fill the bags. Pre-filled sandbags are more expensive at 1.50 - 2.00 per bag. These costs are based upon vendor research.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Sandbags exposed to sunlight will need to be replaced every two to three months due to degradation of the bags.
- Reshape or replace sandbags as needed.
- Repair washouts or other damage as needed.
- Sediment that accumulates behind the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height.
- Remove sandbags when no longer needed and recycle sand fill whenever possible and properly dispose of bag material. Remove sediment accumulation, and clean, re-grade, and stabilize the area.

References

Standard Specifications for Construction of Local Streets and Roads, California Department of Transportation (Caltrans), July 2002.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

Sandbag Barrier

NOTES

- Construct the length of each reach so that the change in base elevation along the reach does not exceed 1/2 the height of the linear barrier, in no case shall the reach length exceed 500.
- 2. Place sandbogs tightly
- 3. Dimension may vary to fit field condition.
- 4 Sondbag barrier shall be a minimum of 3 bags high.
- 5. The end of the borrier sholl be furned up stope.
- 6. Cross barriers shall be a min of 1/2 and a max of 2/3 the height of the incor barrier.
- Sandbag rows and layers shall be staggered to eliminate gaps.

CASQA Stormwater BMP Handbook Construction www.casqa.org

6 of 6

Storm Drain Inlet Protection

Description and Purpose

Storm drain inlet protection consists of a sediment filter or an impounding area in, around or upstream of a storm drain, drop inlet, or curb inlet. Storm drain inlet protection measures temporarily pond runoff before it enters the storm drain, allowing sediment to settle. Some filter configurations also remove sediment by filtering, but usually the ponding action results in the greatest sediment reduction. Temporary geotextile storm drain inserts attach underneath storm drain grates to capture and filter storm water.

Suitable Applications

 Every storm drain inlet receiving runoff from unstabilized or otherwise active work areas should be protected. Inlet protection should be used in conjunction with other erosion and sediment controls to prevent sediment-laden stormwater and non-stormwater discharges from entering the storm drain system.

Limitations

- Drainage area should not exceed 1 acre.
- In general straw bales should not be used as inlet protection.
- Requires an adequate area for water to pond without encroaching into portions of the roadway subject to traffic.
- Sediment removal may be inadequate to prevent sediment discharges in high flow conditions or if runoff is heavily sediment laden. If high flow conditions are expected, use

Categories

∟eg ⊡	end: Primary Category	
WM	Waste Management and Materials Pollution Control	
NS	Non-Stormwater Management Control	
WE	Wind Erosion Control	
ТС	Tracking Control	
SE	Sediment Control	\checkmark
EC	Erosion Control	

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	×
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

SE-1 Silt Fence SE-5 Fiber Rolls SE-6 Gravel Bag Berm SE-8 Sandbag Barrier SE-14 Biofilter Bags

SE-13 Compost Socks and Berms

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

other onsite sediment trapping techniques in conjunction with inlet protection.

- Frequent maintenance is required.
- Limit drainage area to 1 acre maximum. For drainage areas larger than 1 acre, runoff should be routed to a sediment-trapping device designed for larger flows. See BMPs SE-2, Sediment Basin, and SE-3, Sediment Traps.
- Excavated drop inlet sediment traps are appropriate where relatively heavy flows are expected, and overflow capability is needed.

Implementation

General

Inlet control measures presented in this handbook should not be used for inlets draining more than one acre. Runoff from larger disturbed areas should be first routed through SE-2, Sediment Basin or SE-3, Sediment Trap and/or used in conjunction with other drainage control, erosion control, and sediment control BMPs to protect the site. Different types of inlet protection are appropriate for different applications depending on site conditions and the type of inlet. Alternative methods are available in addition to the methods described/shown herein such as prefabricated inlet insert devices, or gutter protection devices.

Design and Layout

Identify existing and planned storm drain inlets that have the potential to receive sedimentladen surface runoff. Determine if storm drain inlet protection is needed and which method to use.

- The key to successful and safe use of storm drain inlet protection devices is to know where runoff that is directed toward the inlet to be protected will pond or be diverted as a result of installing the protection device.
 - Determine the acceptable location and extent of ponding in the vicinity of the drain inlet. The acceptable location and extent of ponding will influence the type and design of the storm drain inlet protection device.
 - Determine the extent of potential runoff diversion caused by the storm drain inlet protection device. Runoff ponded by inlet protection devices may flow around the device and towards the next downstream inlet. In some cases, this is acceptable; in other cases, serious erosion or downstream property damage can be caused by these diversions. The possibility of runoff diversions will influence whether or not storm drain inlet protection is suitable; and, if suitable, the type and design of the device.
- The location and extent of ponding, and the extent of diversion, can usually be controlled through appropriate placement of the inlet protection device. In some cases, moving the inlet protection device a short distance upstream of the actual inlet can provide more efficient sediment control, limit ponding to desired areas, and prevent or control diversions.
- Seven types of inlet protection are presented below. However, it is recognized that other effective methods and proprietary devices exist and may be selected.

- Silt Fence: Appropriate for drainage basins with less than a 5% slope, sheet flows, and flows under 0.5 cfs.
- Excavated Drop Inlet Sediment Trap: An excavated area around the inlet to trap sediment (SE-3).
- Gravel bag barrier: Used to create a small sediment trap upstream of inlets on sloped, paved streets. Appropriate for sheet flow or when concentrated flow may exceed 0.5 cfs, and where overtopping is required to prevent flooding.
- Block and Gravel Filter: Appropriate for flows greater than 0.5 cfs.
- Temporary Geotextile Storm drain Inserts: Different products provide different features. Refer to manufacturer details for targeted pollutants and additional features.
- Biofilter Bag Barrier: Used to create a small retention area upstream of inlets and can be located on pavement or soil. Biofilter bags slowly filter runoff allowing sediment to settle out. Appropriate for flows under 0.5 cfs.
- Compost Socks: Allow filtered run-off to pass through the compost while retaining sediment and potentially other pollutants (SE-13). Appropriate for flows under 1.0 cfs.
- Select the appropriate type of inlet protection and design as referred to or as described in this fact sheet.
- Provide area around the inlet for water to pond without flooding structures and property.
- Grates and spaces around all inlets should be sealed to prevent seepage of sediment-laden water.
- Excavate sediment sumps (where needed) 1 to 2 ft with 2:1 side slopes around the inlet.

Installation

- **DI Protection Type 1 Silt Fence -** Similar to constructing a silt fence; see BMP SE-1, Silt Fence. Do not place fabric underneath the inlet grate since the collected sediment may fall into the drain inlet when the fabric is removed or replaced and water flow through the grate will be blocked resulting in flooding. See typical Type 1 installation details at the end of this fact sheet.
 - 1. Excavate a trench approximately 6 in. wide and 6 in. deep along the line of the silt fence inlet protection device.
 - 2. Place 2 in. by 2 in. wooden stakes around the perimeter of the inlet a maximum of 3 ft apart and drive them at least 18 in. into the ground or 12 in. below the bottom of the trench. The stakes should be at least 48 in.
 - 3. Lay fabric along bottom of trench, up side of trench, and then up stakes. See SE-1, Silt Fence, for details. The maximum silt fence height around the inlet is 24 in.
 - 4. Staple the filter fabric (for materials and specifications, see SE-1, Silt Fence) to wooden stakes. Use heavy-duty wire staples at least 1 in. in length.

- 5. Backfill the trench with gravel or compacted earth all the way around.
- **DI Protection Type 2 Excavated Drop Inlet Sediment Trap -** Install filter fabric fence in accordance with DI Protection Type 1. Size excavated trap to provide a minimum storage capacity calculated at the rate 67 yd³/acre of drainage area. See typical Type 2 installation details at the end of this fact sheet.
- DI Protection Type 3 Gravel bag Flow from a severe storm should not overtop the curb. In areas of high clay and silts, use filter fabric and gravel as additional filter media. Construct gravel bags in accordance with SE-6, Gravel Bag Berm. Gravel bags should be used due to their high permeability. See typical Type 3 installation details at the end of this fact sheet.
 - 1. Construct on gently sloping street.
 - 2. Leave room upstream of barrier for water to pond and sediment to settle.
 - 3. Place several layers of gravel bags overlapping the bags and packing them tightly together.
 - 4. Leave gap of one bag on the top row to serve as a spillway. Flow from a severe storm (e.g., 10-year storm) should not overtop the curb.
- **DI Protection Type 4 Block and Gravel Filter** Block and gravel filters are suitable for curb inlets commonly used in residential, commercial, and industrial construction. See typical Type 4 installation details at the end of this fact sheet.
 - 1. Place hardware cloth or comparable wire mesh with 0.5 in. openings over the drop inlet so that the wire extends a minimum of 1 ft beyond each side of the inlet structure. If more than one strip is necessary, overlap the strips. Place woven geotextile over the wire mesh.
 - 2. Place concrete blocks lengthwise on their sides in a single row around the perimeter of the inlet, so that the open ends face outward, not upward. The ends of adjacent blocks should abut. The height of the barrier can be varied, depending on design needs, by stacking combinations of blocks that are 4 in., 8 in., and 12 in. wide. The row of blocks should be at least 12 in. but no greater than 24 in. high.
 - 3. Place wire mesh over the outside vertical face (open end) of the concrete blocks to prevent stone from being washed through the blocks. Use hardware cloth or comparable wire mesh with 0.5 in. opening.
 - 4. Pile washed stone against the wire mesh to the top of the blocks. Use 0.75 to 3 in.
- DI Protection Type 5 Temporary Geotextile Insert (proprietary) Many types of temporary inserts are available. Most inserts fit underneath the grate of a drop inlet or inside of a curb inlet and are fastened to the outside of the grate or curb. These inserts are removable, and many can be cleaned and reused. Installation of these inserts differs between manufacturers. Please refer to manufacturer instruction for installation of proprietary devices.

- **DI Protection Type 6 Biofilter bags** Biofilter bags may be used as a substitute for gravel bags in low-flow situations. Biofilter bags should conform to specifications detailed in SE-14, Biofilter bags.
 - 1. Construct in a gently sloping area.
 - 2. Biofilter bags should be placed around inlets to intercept runoff flows.
 - 3. All bag joints should overlap by 6 in.
 - 4. Leave room upstream for water to pond and for sediment to settle out.
 - 5. Stake bags to the ground as described in the following detail. Stakes may be omitted if bags are placed on a paved surface.
- **DI Protection Type** 7 **Compost Socks** A compost sock can be assembled on site by filling a mesh sock (e.g., with a pneumatic blower). Compost socks do not require special trenching compared to other sediment control methods (e.g., silt fence). Compost socks should conform to specification detailed in SE-13, Compost Socks and Berms.

Costs

- Average annual cost for installation and maintenance of DI Type 1-4 and 6 (one-year useful life) is \$200 per inlet.
- Temporary geotextile inserts are proprietary, and cost varies by region. These inserts can often be reused and may have greater than 1 year of use if maintained and kept undamaged. Average cost per insert ranges from \$50-75 plus installation, but costs can exceed \$100. This cost does not include maintenance.
- See SE-13 for Compost Sock cost information.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Silt Fences. If the fabric becomes clogged, torn, or degrades, it should be replaced. Make sure the stakes are securely driven in the ground and are in good shape (i.e., not bent, cracked, or splintered, and are reasonably perpendicular to the ground). Replace damaged stakes. At a minimum, remove the sediment behind the fabric fence when accumulation reaches one-third the height of the fence or barrier height.
- Gravel Filters. If the gravel becomes clogged with sediment, it should be carefully removed from the inlet and either cleaned or replaced. Since cleaning gravel at a construction site may be difficult, consider using the sediment-laden stone as fill material and put fresh stone around the inlet. Inspect bags for holes, gashes, and snags, and replace bags as needed. Check gravel bags for proper arrangement and displacement.

- Sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height.
- Inspect and maintain temporary geotextile insert devices according to manufacturer's specifications.
- Remove storm drain inlet protection once the drainage area is stabilized.
 - Clean and regrade area around the inlet and clean the inside of the storm drain inlet, as it should be free of sediment and debris at the time of final inspection.

References

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management Manual for The Puget Sound Basin, Washington State Department of Ecology, Public Review Draft, 1991.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

NOTES:

- 1. For use in areas where grading has been completed and final soil stabilization and seeding are pending.
- 2. Not applicable in paved areas.
- 3. Not applicable with concentrated flows.

Notes

- 1. For use in cleared and grubbed and in graded areas.
- 2. Shape basin so that longest inflow area faces longest length of trap.
- 3. For concentrated flows, shape basin in 2:1 ratio with length oriented towards direction of flow.

TYPICAL PROTECTION FOR INLET ON GRADE

NOTES:

- 1. Intended for short-term use.
- 2. Use to inhibit non-storm water flow.
- 3. Allow for proper maintenance and cleanup.
- 4. Bags must be removed after adjacent operation is completed
- 5. Not applicable in areas with high silts and clays without filter fabric.
- 6. Protection can be effective even if it is not immediately adjacent to the inlet provided that the inlet is protected from potential sources of pollution.

DI PROTECTION TYPE 3 NOT TO SCALE
Storm Drain Inlet Protection

Stabilized Construction Entrance/Exit TC-1

Description and Purpose

A stabilized construction access is defined by a point of entrance/exit to a construction site that is stabilized to reduce the tracking of mud and dirt onto public roads by construction vehicles.

Suitable Applications

Use at construction sites:

- Where dirt or mud can be tracked onto public roads.
- Adjacent to water bodies.
- Where poor soils are encountered.
- Where dust is a problem during dry weather conditions.

Limitations

- Entrances and exits require periodic top dressing with additional stones.
- This BMP should be used in conjunction with street sweeping on adjacent public right of way.
- Entrances and exits should be constructed on level ground only.
- Stabilized construction entrances are rather expensive to construct and when a wash rack is included, a sediment trap of some kind must also be provided to collect wash water runoff.

Categories

EC	Erosion Control	×		
SE	Sediment Control	×		
тс	Tracking Control	\checkmark		
WE	Wind Erosion Control			
NS	Non-Stormwater Management Control			
WM	Waste Management and Materials Pollution Control			
Legend:				
\checkmark	Primary Objective			
_				

Targeted Constituents

Secondary Objective

rargetea constituent.	
Sediment	V
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

None

Implementation

General

A stabilized construction entrance is a pad of aggregate underlain with filter cloth located at any point where traffic will be entering or leaving a construction site to or from a public right of way, street, alley, sidewalk, or parking area. The purpose of a stabilized construction entrance is to reduce or eliminate the tracking of sediment onto public rights of way or streets. Reducing tracking of sediments and other pollutants onto paved roads helps prevent deposition of sediments into local storm drains and production of airborne dust.

Where traffic will be entering or leaving the construction site, a stabilized construction entrance should be used. NPDES permits require that appropriate measures be implemented to prevent tracking of sediments onto paved roadways, where a significant source of sediments is derived from mud and dirt carried out from unpaved roads and construction sites.

Stabilized construction entrances are moderately effective in removing sediment from equipment leaving a construction site. The entrance should be built on level ground. Advantages of the Stabilized Construction Entrance/Exit is that it does remove some sediment from equipment and serves to channel construction traffic in and out of the site at specified locations. Efficiency is greatly increased when a washing rack is included as part of a stabilized construction entrance/exit.

Design and Layout

- Construct on level ground where possible.
- Select 3 to 6 in. diameter stones.
- Use minimum depth of stones of 12 in. or as recommended by soils engineer.
- Construct length of 50 ft or maximum site will allow, and 10 ft minimum width or to accommodate traffic.
- Rumble racks constructed of steel panels with ridges and installed in the stabilized entrance/exit will help remove additional sediment and to keep adjacent streets clean.
- Provide ample turning radii as part of the entrance.
- Limit the points of entrance/exit to the construction site.
- Limit speed of vehicles to control dust.
- Properly grade each construction entrance/exit to prevent runoff from leaving the construction site.
- Route runoff from stabilized entrances/exits through a sediment trapping device before discharge.
- Design stabilized entrance/exit to support heaviest vehicles and equipment that will use it.

- Select construction access stabilization (aggregate, asphaltic concrete, concrete) based on longevity, required performance, and site conditions. Do not use asphalt concrete (AC) grindings for stabilized construction access/roadway.
- If aggregate is selected, place crushed aggregate over geotextile fabric to at least 12 in. depth, or place aggregate to a depth recommended by a geotechnical engineer. A crushed aggregate greater than 3 in. but smaller than 6 in. should be used.
- Designate combination or single purpose entrances and exits to the construction site.
- Require that all employees, subcontractors, and suppliers utilize the stabilized construction access.
- Implement SE-7, Street Sweeping and Vacuuming, as needed.
- All exit locations intended to be used for more than a two-week period should have stabilized construction entrance/exit BMPs.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMPs are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect local roads adjacent to the site daily. Sweep or vacuum to remove visible accumulated sediment.
- Remove aggregate, separate and dispose of sediment if construction entrance/exit is clogged with sediment.
- Keep all temporary roadway ditches clear.
- Check for damage and repair as needed.
- Replace gravel material when surface voids are visible.
- Remove all sediment deposited on paved roadways within 24 hours.
- Remove gravel and filter fabric at completion of construction

Costs

Average annual cost for installation and maintenance may vary from \$1,500 to \$6,100 each, averaging \$3,100 per entrance. Costs will increase with addition of washing rack and sediment trap. With wash rack, costs range from \$1,500 - \$7,700 each, averaging \$4,600 per entrance (All costs adjusted for inflation, 2016 dollars, by Tetra Tech Inc.

References

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Stabilized Construction Entrance/Exit TC-1

National Management Measures to Control Nonpoint Source Pollution from Urban Areas, USEPA Agency, 2002.

Proposed Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters, Work Group Working Paper, USEPA, April 1992.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992.

Virginia Erosion and Sedimentation Control Handbook, Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, 1991.

Guidance Specifying Management Measures for Nonpoint Pollution in Coastal Waters, EPA 840-B-9-002, USEPA, Office of Water, Washington, DC, 1993.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

Stabilized Construction Entrance/Exit TC-1

Description and Purpose

Wind erosion or dust control consists of applying water or other chemical dust suppressants as necessary to prevent or alleviate dust nuisance generated by construction activities. Covering small stockpiles or areas is an alternative to applying water or other dust palliatives.

California's Mediterranean climate, with a short "wet" season and a typically long, hot "dry" season, allows the soils to thoroughly dry out. During the dry season, construction activities are at their peak, and disturbed and exposed areas are increasingly subject to wind erosion, sediment tracking, and dust generated by construction equipment. Site conditions and climate can make dust control more of an erosion problem than water-based erosion. Additionally, many local agencies, including Air Quality Management Districts, require dust control and/or dust control permits in order to comply with local nuisance laws, opacity laws (visibility impairment) and the requirements of the Clean Air Act. Wind erosion control is required to be implemented at all construction sites greater than 1 acre by the General Permit.

Suitable Applications

Most BMPs that provide protection against water-based erosion will also protect against wind-based erosion and dust control requirements required by other agencies will generally meet wind erosion control requirements for water quality protection. Wind erosion control BMPs are suitable during the following construction activities:

Categories

EC	Erosion Control			
SE	Sediment Control	×		
тс	Tracking Control			
WE	Wind Erosion Control	\checkmark		
NS	Non-Stormwater Management Control			
WM	Waste Management and Materials Pollution Control			
Legend:				
\checkmark	Primary Category			
×	Secondary Category			

Targeted Constituents

Sediment	V
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

EC-5 Soil Binders

- Construction vehicle traffic on unpaved roads
- Drilling and blasting activities
- Soils and debris storage piles
- Batch drop from front-end loaders
- Areas with unstabilized soil
- Final grading/site stabilization

Limitations

- Watering prevents dust only for a short period (generally less than a few hours) and should be applied daily (or more often) to be effective.
- Over watering may cause erosion and track-out.
- Oil or oil-treated subgrade should not be used for dust control because the oil may migrate into drainageways and/or seep into the soil.
- Chemical dust suppression agents may have potential environmental impacts. Selected chemical dust control agents should be environmentally benign.
- Effectiveness of controls depends on soil, temperature, humidity, wind velocity and traffic.
- Chemical dust suppression agents should not be used within 100 feet of wetlands or water bodies.
- Chemically treated subgrades may make the soil water repellant, interfering with long-term infiltration and the vegetation/re-vegetation of the site. Some chemical dust suppressants may be subject to freezing and may contain solvents and should be handled properly.
- In compacted areas, watering and other liquid dust control measures may wash sediment or other constituents into the drainage system.
- If the soil surface has minimal natural moisture, the affected area may need to be pre-wetted so that chemical dust control agents can uniformly penetrate the soil surface.

Implementation

Dust Control Practices

Dust control BMPs generally stabilize exposed surfaces and minimize activities that suspend or track dust particles. The following table presents dust control practices that can be applied to varying site conditions that could potentially cause dust. For heavily traveled and disturbed areas, wet suppression (watering), chemical dust suppression, gravel asphalt surfacing, temporary gravel construction entrances, equipment wash-out areas, and haul truck covers can be employed as dust control applications. Permanent or temporary vegetation and mulching can be employed for areas of occasional or no construction traffic. Preventive measures include minimizing surface areas to be disturbed, limiting onsite vehicle traffic to 15 mph or less, and controlling the number and activity of vehicles on a site at any given time.

Chemical dust suppressants include: mulch and fiber based dust palliatives (e.g. paper mulch with gypsum binder), salts and brines (e.g. calcium chloride, magnesium chloride), non-petroleum based organics (e.g. vegetable oil, lignosulfonate), petroleum based organics (e.g. asphalt emulsion, dust oils, petroleum resins), synthetic polymers (e.g. polyvinyl acetate, vinyl, acrylic), clay additives (e.g. bentonite, montmorillonite) and electrochemical products (e.g. enzymes, ionic products).

	Dust Control Practices							
Site Condition	Permanent Vegetation	Mulching	Wet Suppression (Watering)	Chemical Dust Suppression	Gravel or Asphalt	Temporary Gravel Construction Entrances/Equipment Wash Down	Synthetic Covers	Minimize Extent of Disturbed Area
Disturbed Areas not Subject to Traffic	Х	Х	Х	Х	Х			х
Disturbed Areas Subject to Traffic			Х	Х	Х	X		х
Material Stockpiles		Х	Х	х			Х	х
Demolition			Х			Х	х	
Clearing/ Excavation			Х	х				х
Truck Traffic on Unpaved Roads			х	Х	Х	Х	Х	
Tracking					Х	Х		

Additional preventive measures include:

- Schedule construction activities to minimize exposed area (see EC-1, Scheduling).
- Quickly treat exposed soils using water, mulching, chemical dust suppressants, or stone/gravel layering.
- Identify and stabilize key access points prior to commencement of construction.
- Minimize the impact of dust by anticipating the direction of prevailing winds.
- Restrict construction traffic to stabilized roadways within the project site, as practicable.
- Water should be applied by means of pressure-type distributors or pipelines equipped with a spray system or hoses and nozzles that will ensure even distribution.
- All distribution equipment should be equipped with a positive means of shutoff.
- Unless water is applied by means of pipelines, at least one mobile unit should be available at all times to apply water or dust palliative to the project.
- If reclaimed waste water is used, the sources and discharge must meet California Department of Health Services water reclamation criteria and the Regional Water Quality

Control Board (RWQCB) requirements. Non-potable water should not be conveyed in tanks or drain pipes that will be used to convey potable water and there should be no connection between potable and non-potable supplies. Non-potable tanks, pipes, and other conveyances should be marked, "NON-POTABLE WATER - DO NOT DRINK."

- Pave or chemically stabilize access points where unpaved traffic surfaces adjoin paved roads.
- Provide covers for haul trucks transporting materials that contribute to dust.
- Provide for rapid clean up of sediments deposited on paved roads. Furnish stabilized construction road entrances and wheel wash areas.
- Stabilize inactive areas of construction sites using temporary vegetation or chemical stabilization methods.

For chemical stabilization, there are many products available for chemically stabilizing gravel roadways and stockpiles. If chemical stabilization is used, the chemicals should not create any adverse effects on stormwater, plant life, or groundwater and should meet all applicable regulatory requirements.

Costs

Installation costs for water and chemical dust suppression vary based on the method used and the length of effectiveness. Annual costs may be high since some of these measures are effective for only a few hours to a few days.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Check areas protected to ensure coverage.
- Most water-based dust control measures require frequent application, often daily or even multiple times per day. Obtain vendor or independent information on longevity of chemical dust suppressants.

References

Best Management Practices and Erosion Control Manual for Construction Sites, Flood Control District of Maricopa County, Arizona, September 1992.

California Air Pollution Control Laws, California Air Resources Board, updated annually.

Construction Manual, Chapter 4, Section 10, "Dust Control"; Section 17, "Watering"; and Section 18, "Dust Palliative", California Department of Transportation (Caltrans), July 2001.

Prospects for Attaining the State Ambient Air Quality Standards for Suspended Particulate Matter (PM10), Visibility Reducing Particles, Sulfates, Lead, and Hydrogen Sulfide, California Air Resources Board, April 1991.

Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Water Conservation Practices

Description and Purpose

Water conservation practices are activities that use water during the construction of a project in a manner that avoids causing erosion and the transport of pollutants offsite. These practices can reduce or eliminate non-stormwater discharges.

Suitable Applications

Water conservation practices are suitable for all construction sites where water is used, including piped water, metered water, trucked water, and water from a reservoir.

Limitations

None identified.

Implementation

- Keep water equipment in good working condition.
- Stabilize water truck filling area.
- Repair water leaks promptly.
- Washing of vehicles and equipment on the construction site is discouraged.
- Avoid using water to clean construction areas. If water must be used for cleaning or surface preparation, surface should be swept and vacuumed first to remove dirt. This will minimize amount of water required.

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

August 2023

Categories

EC	Erosion Control	×
SE	Sediment Control	×
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	V
WM	Waste Management and Materials Pollution Control	
Leg 🗹	end: Primary Objective	

Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

None

- Direct construction water runoff to areas where it can soak into the ground or be collected and used.
- Authorized non-stormwater discharges to the storm drain system, channels, or receiving waters are acceptable with the implementation of appropriate BMPs.
- Lock water tank valves to prevent unauthorized use.

Costs

The cost is small to none compared to the benefits of conserving water.

Inspection and Maintenance

- Inspect and verify that activity based BMPs are in place prior to the commencement of authorized non-stormwater discharges.
- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges are occuring.
- Repair water equipment as needed to prevent unintended discharges.
 - Water trucks
 - Water reservoirs (water buffalos)
 - Irrigation systems
 - Hydrant connections

References

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Paving and Grinding Operations

Description and Purpose

Prevent or reduce the discharge of pollutants from paving operations, using measures to prevent runon and runoff pollution, properly disposing of wastes, and training employees and subcontractors.

The General Permit incorporates Numeric Action Levels (NAL) for pH and turbidity (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements).

Many types of construction materials associated with paving and grinding operations, including mortar, concrete, and cement and their associated wastes have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows, which could lead to exceedances of the General Permit requirements.

Suitable Applications

These procedures are implemented where paving, surfacing, resurfacing, or sawcutting, may pollute stormwater runoff or discharge to the storm drain system or watercourses.

Limitations

• Paving opportunities may be limited during wet weather.

Discharges of freshly paved surfaces may raise pH to environmentally harmful levels and trigger permit violations.

Categories

SESediment ControlTCTracking ControlWEWind Erosion ControlNSNon-Stormwater Management ControlWMWaste Management and Materials Pollution Control	
TC Tracking Control WE Wind Erosion Control NS Non-Stormwater	×
TC Tracking Control	V
SE Sediment Control	
EC Erosion Control	

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	\checkmark
Organics	

Potential Alternatives

None

Implementation

General

- Avoid paving during the wet season when feasible.
- Reschedule paving and grinding activities if rain is forecasted.
- Train employees and sub-contractors in pollution prevention and reduction.
- Store materials away from drainage courses to prevent stormwater runon (see WM-1, Material Delivery and Storage).
- Protect drainage courses, particularly in areas with a grade, by employing BMPs to divert runoff or to trap and filter sediment.
- Stockpile material removed from roadways away from drain inlets, drainage ditches, and watercourses. These materials should be stored consistent with WM-3, Stockpile Management.
- Disposal of PCC (Portland cement concrete) and AC (asphalt concrete) waste should be in conformance with WM-8, Concrete Waste Management.

Saw Cutting, Grinding, and Pavement Removal

- Shovel or vacuum saw-cut slurry and remove from site. Cover or barricade storm drains during saw cutting to contain slurry.
- When paving involves AC, the following steps should be implemented to prevent the discharge of grinding residue, uncompacted or loose AC, tack coats, equipment cleaners, or unrelated paving materials:
 - AC grindings, pieces, or chunks used in embankments or shoulder backing should not be allowed to enter any storm drains or watercourses. Install inlet protection and perimeter controls until area is stabilized (i.e. cutting, grinding or other removal activities are complete and loose material has been properly removed and disposed of)or permanent controls are in place. Examples of temporary perimeter controls can be found in EC-9, Earth Dikes and Drainage Swales; SE-1, Silt Fence; SE-5, Fiber Rolls, or SE-13 Compost Socks and Berms
 - Collect and remove all broken asphalt and recycle when practical. Old or spilled asphalt should be recycled or disposed of properly.
- Do not allow saw-cut slurry to enter storm drains or watercourses. Residue from grinding operations should be picked up by a vacuum attachment to the grinding machine, or by sweeping, should not be allowed to flow across the pavement, and should not be left on the surface of the pavement. See also WM-8, Concrete Waste Management, and WM-10, Liquid Waste Management.
- Pavement removal activities should not be conducted in the rain.
- Collect removed pavement material by mechanical or manual methods. This material may be recycled for use as shoulder backing or base material.

• If removed pavement material cannot be recycled, transport the material back to an approved storage site.

Asphaltic Concrete Paving

- If paving involves asphaltic cement concrete, follow these steps:
 - Do not allow sand or gravel placed over new asphalt to wash into storm drains, streets, or creeks. Vacuum or sweep loose sand and gravel and properly dispose of this waste by referring to WM-5, Solid Waste Management.
 - Old asphalt should be disposed of properly. Collect and remove all broken asphalt from the site and recycle whenever possible.

Portland Cement Concrete Paving

Do not wash sweepings from exposed aggregate concrete into a storm drain system. Collect waste materials by dry methods, such as sweeping or shoveling, and return to aggregate base stockpile or dispose of properly. Allow aggregate rinse to settle. Then, either allow rinse water to dry in a temporary pit as described in WM-8, Concrete Waste Management, or pump the water to the sanitary sewer if authorized by the local wastewater authority.

Sealing Operations

- During chip seal application and sweeping operations, petroleum or petroleum covered aggregate should not be allowed to enter any storm drain or water courses. Apply temporary perimeter controls until structure is stabilized (i.e. all sealing operations are complete and cured and loose materials have been properly removed and disposed).
- Inlet protection (SE-10, Storm Drain Inlet Protection) should be used during application of seal coat, tack coat, slurry seal, and fog seal.
- Seal coat, tack coat, slurry seal, or fog seal should not be applied if rainfall is predicted to occur during the application or curing period.

Paving Equipment

- Leaks and spills from paving equipment can contain toxic levels of heavy metals and oil and grease. Place drip pans or absorbent materials under paving equipment when not in use. Clean up spills with absorbent materials and dispose of in accordance with the applicable regulations. See NS-10, Vehicle and Equipment Maintenance, WM-4, Spill Prevention and Control, and WM-10, Liquid Waste Management.
- Substances used to coat asphalt transport trucks and asphalt spreading equipment should not contain soap and should be non-foaming and non-toxic.
- Paving equipment parked onsite should be parked over plastic to prevent soil contamination.
- Clean asphalt coated equipment offsite whenever possible. When cleaning dry, hardened asphalt from equipment, manage hardened asphalt debris as described in WM-5, Solid Waste Management. Any cleaning onsite should follow NS-8, Vehicle and Equipment Cleaning.

Thermoplastic Striping

- Thermoplastic striper and pre-heater equipment shutoff valves should be inspected to ensure that they are working properly to prevent leaking thermoplastic from entering drain inlets, the stormwater drainage system, or watercourses.
- Pre-heaters should be filled carefully to prevent splashing or spilling of hot thermoplastic. Leave six inches of space at the top of the pre-heater container when filling thermoplastic to allow room for material to move.
- Do not pre-heat, transfer, or load thermoplastic near drain inlets or watercourses.
- Clean truck beds daily of loose debris and melted thermoplastic. When possible, recycle thermoplastic material.

Raised/Recessed Pavement Marker Application and Removal

- Do not transfer or load bituminous material near drain inlets, the stormwater drainage system, or watercourses.
- Melting tanks should be loaded with care and not filled to beyond six inches from the top to leave room for splashing.
- When servicing or filling melting tanks, ensure all pressure is released before removing lids to avoid spills.
- On large-scale projects, use mechanical or manual methods to collect excess bituminous material from the roadway after removal of markers.

Costs

• All of the above are low cost measures.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of paving and grinding operations.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Sample stormwater runoff required by the General Permit.
- Keep ample supplies of drip pans or absorbent materials onsite.
- Inspect and maintain machinery regularly to minimize leaks and drips.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Hot Mix Asphalt-Paving Handbook AC 150/5370-14, Appendix I, U.S. Army Corps of Engineers, July 1991.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

Illicit Connection/Discharge

Description and Purpose

Procedures and practices designed for construction contractors to recognize illicit connections or illegally dumped or discharged materials on a construction site and report incidents.

Suitable Applications

This best management practice (BMP) applies to all construction projects. Illicit connection/discharge and reporting is applicable anytime an illicit connection or discharge is discovered, or illegally dumped material is found on the construction site.

Limitations

Illicit connections and illegal discharges or dumping, for the purposes of this BMP, refer to discharges and dumping caused by parties other than the contractor. If pre-existing hazardous materials or wastes are known to exist onsite, they should be identified in the SWPPP and handled as set forth in the SWPPP.

Implementation

Planning

- Review the SWPPP. Pre-existing areas of contamination should be identified and documented in the SWPPP.
- Inspect site before beginning the job for evidence of illicit connections, illegal dumping or discharges. Document any pre-existing conditions and notify the owner.

Categories

- **Erosion Control** EC SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater NS $\mathbf{\nabla}$ Management Control Waste Management and WM Materials Pollution Control Legend: Primary Objective
- Secondary Objective

Targeted Constituents

Sediment	
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	\checkmark
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

- Inspect site regularly during project execution for evidence of illicit connections, illegal dumping or discharges.
- Observe site perimeter for evidence for potential of illicitly discharged or illegally dumped material, which may enter the job site.

Identification of Illicit Connections and Illegal Dumping or Discharges

- **General** unlabeled and unidentifiable material should be treated as hazardous.
- **Solids** Look for debris, or rubbish piles. Solid waste dumping often occurs on roadways with light traffic loads or in areas not easily visible from the traveled way.
- **Liquids** signs of illegal liquid dumping or discharge can include:
 - Visible signs of staining or unusual colors to the pavement or surrounding adjacent soils
 - Pungent odors coming from the drainage systems
 - Discoloration or oily substances in the water or stains and residues detained within ditches, channels or drain boxes
 - Abnormal water flow during the dry weather season
- Urban Areas Evidence of illicit connections or illegal discharges is typically detected at storm drain outfall locations or at manholes. Signs of an illicit connection or illegal discharge can include:
 - Abnormal water flow during the dry weather season
 - Unusual flows in sub drain systems used for dewatering
 - Pungent odors coming from the drainage systems
 - Discoloration or oily substances in the water or stains and residues detained within ditches, channels or drain boxes
 - Excessive sediment deposits, particularly adjacent to or near active offsite construction projects
- Rural Areas Illicit connections or illegal discharges involving irrigation drainage ditches are detected by visual inspections. Signs of an illicit discharge can include:
 - Abnormal water flow during the non-irrigation season
 - Non-standard junction structures
 - Broken concrete or other disturbances at or near junction structures

Reporting

Notify the owner of any illicit connections and illegal dumping or discharge incidents at the time of discovery. For illicit connections or discharges to the storm drain system, notify the local stormwater management agency. For illegal dumping, notify the local law enforcement agency.

Cleanup and Removal

The responsibility for cleanup and removal of illicit or illegal dumping or discharges will vary by location. Contact the local stormwater management agency for further information.

Costs

Costs to look for and report illicit connections and illegal discharges and dumping are low. The best way to avoid costs associated with illicit connections and illegal discharges and dumping is to keep the project perimeters secure to prevent access to the site, to observe the site for vehicles that should not be there, and to document any waste or hazardous materials that exist onsite before taking possession of the site.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect the site regularly to check for any illegal dumping or discharge.
- Prohibit employees and subcontractors from disposing of non-job-related debris or materials at the construction site.
- Notify the owner of any illicit connections and illegal dumping or discharge incidents at the time of discovery.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992.

Potable Water/Irrigation

Description and Purpose

Potable Water/Irrigation consists of practices and procedures to manage the discharge of potential pollutants generated during discharges from irrigation water lines, landscape irrigation, lawn or garden watering, planned and unplanned discharges from potable water sources, water line flushing, and hydrant flushing.

Suitable Applications

Implement this BMP whenever potable water or irrigation water discharges occur at or enter a construction site.

Limitations

None identified.

Implementation

- Direct water from offsite sources around or through a construction site, where feasible, in a way that minimizes contact with the construction site.
- Discharges from water line flushing should be reused for landscaping purposes where feasible.
- Shut off the water source to broken lines, sprinklers, or valves as soon as possible to prevent excess water flow.
- Protect downstream stormwater drainage systems and watercourses from water pumped or bailed from trenches excavated to repair water lines.

Categories

- **Erosion Control** EC SE Sediment Control **Tracking Control** TC WE Wind Erosion Control Non-Stormwater $\mathbf{\Lambda}$ NS Management Control Waste Management and WM Materials Pollution Control Legend: Primary Objective
- Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	
Metals	\checkmark
Bacteria	
Oil and Grease	
Organics	\checkmark
	V

Potential Alternatives

None

Inspect irrigated areas within the construction limits for excess watering. Adjust watering
times and schedules to ensure that the appropriate amount of water is being used and to
minimize runoff. Consider factors such as soil structure, grade, time of year, and type of
plant material in determining the proper amounts of water for a specific area.

Costs

Cost to manage potable water and irrigation are low and generally considered to be a normal part of related activities.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
- Repair broken water lines as soon as possible.
- Inspect irrigated areas regularly for signs of erosion and/or discharge.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992.

Vehicle and Equipment Cleaning

Description and Purpose

Vehicle and equipment cleaning procedures and practices eliminate or reduce the discharge of pollutants to stormwater from vehicle and equipment cleaning operations. Procedures and practices include but are not limited to: using offsite facilities; washing in designated, contained areas only; eliminating discharges to the storm drain by infiltrating the wash water; and training employees and subcontractors in proper cleaning procedures.

Suitable Applications

These procedures are suitable on all construction sites where vehicle and equipment cleaning is performed.

Limitations

Even phosphate-free, biodegradable soaps have been shown to be toxic to fish before the soap degrades. Sending vehicles/equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/Exit.

Implementation

Other options to washing equipment onsite include contracting with either an offsite or mobile commercial washing business. These businesses may be better equipped to handle and dispose of the wash waters properly. Performing this work offsite can also be economical by eliminating the need for a separate washing operation onsite.

If washing operations are to take place onsite, then:

Categories

EC	Erosion Control	
SE	Sediment Control	
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	V
WM	Waste Management and Materials Pollution Control	
Leg	end:	
\checkmark	Primary Objective	
×	Secondary Objective	

Targeted Constituents

Sediment	$\mathbf{\overline{A}}$
Nutrients	\checkmark
Trash	
Metals	
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

- Use phosphate-free, biodegradable soaps.
- Educate employees and subcontractors on pollution prevention measures.
- Do not permit steam cleaning onsite. Steam cleaning can generate significant pollutant concentrates.
- Cleaning of vehicles and equipment with soap, solvents or steam should not occur on the project site unless resulting wastes are fully contained and disposed of. Resulting wastes should not be discharged or buried and must be captured and recycled or disposed according to the requirements of WM-10, Liquid Waste Management or WM-6, Hazardous Waste Management, depending on the waste characteristics. Minimize use of solvents. Use of diesel for vehicle and equipment cleaning is prohibited.
- All vehicles and equipment that regularly enter and leave the construction site must be cleaned offsite.
- When vehicle and equipment washing and cleaning must occur onsite, and the operation cannot be located within a structure or building equipped with appropriate disposal facilities, the outside cleaning area should have the following characteristics:
 - Located away from storm drain inlets, drainage facilities, or watercourses
 - Paved with concrete or asphalt and bermed to contain wash waters and to prevent runon and runoff
 - Configured with a sump to allow collection and disposal of wash water
 - No discharge of wash waters to storm drains or watercourses
 - Used only when necessary
- When cleaning vehicles and equipment with water:
 - Use as little water as possible. High-pressure sprayers may use less water than a hose and should be considered
 - Use positive shutoff valve to minimize water usage
 - Facility wash racks should discharge to a sanitary sewer, recycle system or other approved discharge system and must not discharge to the storm drainage system, watercourses, or to groundwater

Costs

Cleaning vehicles and equipment at an offsite facility may reduce overall costs for vehicle and equipment cleaning by eliminating the need to provide similar services onsite. When onsite cleaning is needed, the cost to establish appropriate facilities is relatively low on larger, long-duration projects, and moderate to high on small, short-duration projects.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
- Inspection and maintenance is minimal, although some berm repair may be necessary.
- Monitor employees and subcontractors throughout the duration of the construction project to ensure appropriate practices are being implemented.
- Inspect sump regularly and remove liquids and sediment as needed.
- Prohibit employees and subcontractors from washing personal vehicles and equipment on the construction site.

References

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Swisher, R.D. Surfactant Biodegradation, Marcel Decker Corporation, 1987.

Vehicle and Equipment Fueling

Description and Purpose

Vehicle equipment fueling procedures and practices are designed to prevent fuel spills and leaks and reduce or eliminate contamination of stormwater. This can be accomplished by using offsite facilities, fueling in designated areas only, enclosing or covering stored fuel, implementing spill controls, and training employees and subcontractors in proper fueling procedures.

Suitable Applications

These procedures are suitable on all construction sites where vehicle and equipment fueling takes place.

Limitations

Onsite vehicle and equipment fueling should only be used where it is impractical to send vehicles and equipment offsite for fueling. Sending vehicles and equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/ Exit.

Implementation

- Use offsite fueling stations as much as possible. These businesses are better equipped to handle fuel and spills properly. Performing this work offsite can also be economical by eliminating the need for a separate fueling area at a site.
- Discourage "topping-off" of fuel tanks.

Categories

EC	Erosion Control		
SE	Sediment Control		
ГС	Tracking Control		
NE	Wind Erosion Control		
٧S	Non-Stormwater		
49	Management Control		
	Waste Management and		
NM	Materials Pollution Control		
Legend:			
\checkmark	✓ Primary Objective		

Secondary Objective

Targeted Constituents

Sediment	
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	\checkmark
Organics	

Potential Alternatives

None

- Absorbent spill cleanup materials and spill kits should be available in fueling areas and on fueling trucks and should be disposed of properly after use.
- Drip pans or absorbent pads should be used during vehicle and equipment fueling, unless the fueling is performed over an impermeable surface in a dedicated fueling area.
- Use absorbent materials on small spills. Do not hose down or bury the spill. Remove the adsorbent materials promptly and dispose of properly.
- Avoid mobile fueling of mobile construction equipment around the site; rather, transport the
 equipment to designated fueling areas. With the exception of tracked equipment such as
 bulldozers and large excavators, most vehicles should be able to travel to a designated area
 with little lost time.
- Train employees and subcontractors in proper fueling and cleanup procedures.
- When fueling must take place onsite, designate an area away from drainage courses to be used. Fueling areas should be identified in the SWPPP.
- Dedicated fueling areas should be protected from stormwater runon and runoff and should be located at least 50 ft away from downstream drainage facilities and watercourses. Fueling must be performed on level-grade areas.
- Protect fueling areas with berms and dikes to prevent runon, runoff, and to contain spills.
- Nozzles used in vehicle and equipment fueling should be equipped with an automatic shutoff to control drips. Fueling operations should not be left unattended.
- Use vapor recovery nozzles to help control drips as well as air pollution where required by Air Quality Management Districts (AQMD).
- Federal, state, and local requirements should be observed for any stationary above ground storage tanks.

Costs

• All of the above measures are low cost except for the capital costs of above ground tanks that meet all local environmental, zoning, and fire codes.

Inspection and Maintenance

- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Vehicles and equipment should be inspected each day of use for leaks. Leaks should be repaired immediately, or problem vehicles or equipment should be removed from the project site.
- Keep ample supplies of spill cleanup materials onsite.

 Immediately clean up spills and properly dispose of contaminated soil and cleanup materials.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992.

Vehicle & Equipment Maintenance NS-10

Description and Purpose

Prevent or reduce the contamination of stormwater resulting from vehicle and equipment maintenance by running a "dry and clean site". The best option would be to perform maintenance activities at an offsite facility. If this option is not available then work should be performed in designated areas only, while providing cover for materials stored outside, checking for leaks and spills, and containing and cleaning up spills immediately. Employees and subcontractors must be trained in proper procedures.

Suitable Applications

These procedures are suitable on all construction projects where an onsite yard area is necessary for storage and maintenance of heavy equipment and vehicles.

Limitations

Onsite vehicle and equipment maintenance should only be used where it is impractical to send vehicles and equipment offsite for maintenance and repair. Sending vehicles/equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/Exit.

Outdoor vehicle or equipment maintenance is a potentially significant source of stormwater pollution. Activities that can contaminate stormwater include engine repair and service, changing or replacement of fluids, and outdoor equipment storage and parking (engine fluid leaks). For further information on vehicle or equipment servicing, see NS-8,

Categories

Primary Objective			
Legend:			
WM	Waste Management and Materials Pollution Control		
NS	Non-Stormwater Management Control	V	
WE	Wind Erosion Control		
тс	Tracking Control		
SE	Sediment Control		
EC	Erosion Control		

Secondary Objective

Targeted Constituents

Sediment	
Nutrients	\checkmark
Trash	\checkmark
Metals	
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

Vehicle and Equipment Cleaning, and NS-9, Vehicle and Equipment Fueling.

Implementation

- Use offsite repair shops as much as possible. These businesses are better equipped to handle vehicle fluids and spills properly. Performing this work offsite can also be economical by eliminating the need for a separate maintenance area.
- If maintenance must occur onsite, use designated areas, located away from drainage courses. Dedicated maintenance areas should be protected from stormwater runon and runoff and should be located at least 50 ft from downstream drainage facilities and watercourses.
- Drip pans or absorbent pads should be used during vehicle and equipment maintenance work that involves fluids, unless the maintenance work is performed over an impermeable surface in a dedicated maintenance area.
- Place a stockpile of spill cleanup materials where it will be readily accessible.
- All fueling trucks and fueling areas are required to have spill kits and/or use other spill protection devices.
- Use adsorbent materials on small spills. Remove the absorbent materials promptly and dispose of properly.
- Inspect onsite vehicles and equipment daily at startup for leaks, and repair immediately.
- Keep vehicles and equipment clean; do not allow excessive build-up of oil and grease.
- Segregate and recycle wastes, such as greases, used oil or oil filters, antifreeze, cleaning solutions, automotive batteries, hydraulic and transmission fluids. Provide secondary containment and covers for these materials if stored onsite.
- Train employees and subcontractors in proper maintenance and spill cleanup procedures.
- Drip pans or plastic sheeting should be placed under all vehicles and equipment placed on docks, barges, or other structures over water bodies when the vehicle or equipment is planned to be idle for more than 1 hour.
- For long-term projects, consider using portable tents or covers over maintenance areas if maintenance cannot be performed offsite.
- Consider use of new, alternative greases and lubricants, such as adhesive greases, for chassis lubrication and fifth-wheel lubrication.
- Properly dispose of used oils, fluids, lubricants, and spill cleanup materials.
- Do not place used oil in a dumpster or pour into a storm drain or watercourse.
- Properly dispose of or recycle used batteries.
- Do not bury used tires.

Repair leaks of fluids and oil immediately.

Listed below is further information if you must perform vehicle or equipment maintenance onsite.

Safer Alternative Products

- Consider products that are less toxic or hazardous than regular products. These products are often sold under an "environmentally friendly" label.
- Consider use of grease substitutes for lubrication of truck fifth-wheels. Follow manufacturers label for details on specific uses.
- Consider use of plastic friction plates on truck fifth-wheels in lieu of grease. Follow manufacturers label for details on specific uses.

Waste Reduction

Parts are often cleaned using solvents such as trichloroethylene, trichloroethane, or methylene chloride. Many of these cleaners are listed in California Toxic Rule as priority pollutants. These materials are harmful and must not contaminate stormwater. They must be disposed of as a hazardous waste. Reducing the number of solvents makes recycling easier and reduces hazardous waste management costs. Often, one solvent can perform a job as well as two different solvents. Also, if possible, eliminate or reduce the amount of hazardous materials and waste by substituting non-hazardous or less hazardous materials. For example, replace chlorinated organic solvents with non-chlorinated solvents. Non-chlorinated solvents like kerosene or mineral spirits are less toxic and less expensive to dispose of properly. Check the list of active ingredients to see whether it contains chlorinated solvents. The "chlor" term indicates that the solvent is chlorinated. Also, try substituting a wire brush for solvents to clean parts.

Recycling and Disposal

Separating wastes allows for easier recycling and may reduce disposal costs. Keep hazardous wastes separate, do not mix used oil solvents, and keep chlorinated solvents (like,trichloroethane) separate from non-chlorinated solvents (like kerosene and mineral spirits). Promptly transfer used fluids to the proper waste or recycling drums. Don't leave full drip pans or other open containers lying around. Provide cover and secondary containment until these materials can be removed from the site.

Oil filters can be recycled. Ask your oil supplier or recycler about recycling oil filters.

Do not dispose of extra paints and coatings by dumping liquid onto the ground or throwing it into dumpsters. Allow coatings to dry or harden before disposal into covered dumpsters.

Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries, even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Costs

All of the above are low cost measures. Higher costs are incurred to setup and maintain onsite maintenance areas.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
- Keep ample supplies of spill cleanup materials onsite.
- Maintain waste fluid containers in leak proof condition.
- Vehicles and equipment should be inspected on each day of use. Leaks should be repaired immediately, or the problem vehicle(s) or equipment should be removed from the project site.
- Inspect equipment for damaged hoses and leaky gaskets routinely. Repair or replace as needed.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Coastal Nonpoint Pollution Control Program; Program Development and Approval Guidance, Working Group, Working Paper; USEPA, April 1992.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Concrete Curing

Description and Purpose

Concrete curing is used in the construction of structures such as bridges, retaining walls, pump houses, large slabs, and structured foundations. Concrete curing includes the use of both chemical and water methods.

Concrete and its associated curing materials have basic chemical properties that can raise the pH of water to levels outside of the permitted range. Discharges of stormwater and non-stormwater exposed to concrete during curing may have a high pH and may contain chemicals, metals, and fines. The General Permit incorporates Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements).

Proper procedures and care should be taken when managing concrete curing materials to prevent them from coming into contact with stormwater flows, which could result in a high pH discharge.

Suitable Applications

Suitable applications include all projects where Portland Cement Concrete (PCC) and concrete curing chemicals are placed where they can be exposed to rainfall, runoff from other areas, or where runoff from the PCC will leave the site.

Limitations

 Runoff contact with concrete waste can raise pH levels in the water to environmentally harmful levels and trigger permit violations.

Categories

EC	Erosion Control	
SE	Sediment Control	
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	V
WM	Waste Management and Materials Pollution Control	V
Legend: 🗹 Primary Category		

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	

Potential Alternatives

None

Implementation

Chemical Curing

- Avoid over spray of curing compounds.
- Minimize the drift by applying the curing compound close to the concrete surface. Apply an amount of compound that covers the surface but does not allow any runoff of the compound.
- Use proper storage and handling techniques for concrete curing compounds. Refer to WM-1, Material Delivery and Storage.
- Protect drain inlets prior to the application of curing compounds.
- Refer to WM-4, Spill Prevention and Control.

Water Curing for Bridge Decks, Retaining Walls, and other Structures

- Direct cure water away from inlets and watercourses to collection areas for evaporation or other means of removal in accordance with all applicable permits. See WM-8 Concrete Waste Management.
- Collect cure water at the top of slopes and transport to a concrete waste management area in a non-erosive manner. See EC-9 Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains.
- Utilize wet blankets or a similar method that maintains moisture while minimizing the use and possible discharge of water.

Education

- Educate employees, subcontractors, and suppliers on proper concrete curing techniques to prevent contact with discharge as described herein.
- Arrange for the QSP or the appropriately trained contractor's superintendent or representative to oversee and enforce concrete curing procedures.

Costs

All of the above measures are generally low cost.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
- Sample non-stormwater discharges and stormwater runoff that contacts uncured and partially cured concrete as required by the General Permit.
- Ensure that employees and subcontractors implement appropriate measures for storage, handling, and use of curing compounds.
- Inspect cure containers and spraying equipment for leaks.

References

Blue Print for a Clean Bay-Construction-Related Industries: Best Management Practices for Stormwater Pollution Prevention; Santa Clara Valley Non-Point Source Pollution Control Program, 1992.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992.

Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

Concrete Finishing

Description and Purpose

Concrete finishing methods are used for bridge deck rehabilitation, paint removal, curing compound removal, and final surface finish appearances. Methods include sand blasting, shot blasting, grinding, or high-pressure water blasting. Stormwater and non-stormwater exposed to concrete finishing by-products may have a high pH and may contain chemicals, metals, and fines. Proper procedures and implementation of appropriate BMPs can minimize the impact that concrete-finishing methods may have on stormwater and non-stormwater discharges.

The General Permit incorporates Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements).

Concrete and its associated curing materials have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows, which could lead to exceedances of the General Permit requirements.

Suitable Applications

These procedures apply to all construction locations where concrete finishing operations are performed.

Categories

\checkmark	Primary Category	
Legend:		
WM	Waste Management and Materials Pollution Control	V
NS	Non-Stormwater Management Control	V
WE	Wind Erosion Control	
тс	Tracking Control	
SE	Sediment Control	
EC	Erosion Control	

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	\checkmark
Bacteria	
Oil and Grease	
Organics	\checkmark

Potential Alternatives

None

Limitations

• Runoff contact with concrete waste can raise pH levels in the water to environmentally harmful levels and trigger permit violations.

Implementation

- Collect and properly dispose of water from high-pressure water blasting operations.
- Collect contaminated water from blasting operations at the top of slopes. Transport or dispose of contaminated water while using BMPs such as those for erosion control. Refer to EC-9, Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains.
- Direct water from blasting operations away from inlets and watercourses to collection areas for infiltration or other means of removal (dewatering). Refer to NS-2 Dewatering Operations.
- Protect inlets during sandblasting operations. Refer to SE-10, Storm Drain Inlet Protection.
- Refer to WM-8, Concrete Waste Management for disposal of concrete debris.
- Minimize the drift of dust and blast material as much as possible by keeping the blasting nozzle close to the surface.
- When blast residue contains a potentially hazardous waste, refer to WM-6, Hazardous Waste Management.

Education

- Educate employees, subcontractors, and suppliers on proper concrete finishing techniques to prevent contact with discharge as described herein.
- Arrange for the QSP or the appropriately trained contractor's superintendent or representative to oversee and enforce concrete finishing procedures.

Costs

These measures are generally of low cost.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
- Sample non-stormwater discharges and stormwater runoff that contacts concrete dust and debris as required by the General Permit.

- Sweep or vacuum up debris from sandblasting at the end of each shift.
- At the end of each work shift, remove and contain liquid and solid waste from containment structures, if any, and from the general work area.
- Inspect containment structures for damage prior to use and prior to onset of forecasted rain.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992.

Material Delivery and Storage

Description and Purpose

Prevent, reduce, or eliminate the discharge of pollutants from material delivery and storage to the stormwater system or watercourses by minimizing the storage of hazardous materials onsite, storing materials in watertight containers and/or a completely enclosed designated area, installing secondary containment, conducting regular inspections, and training employees and subcontractors.

This best management practice covers only material delivery and storage. For other information on materials, see WM-2, Material Use, or WM-4, Spill Prevention and Control. For information on wastes, see the waste management BMPs in this section.

Suitable Applications

These procedures are suitable for use at all construction sites with delivery and storage of the following materials:

- Soil stabilizers and binders
- Pesticides and herbicides
- Fertilizers
- Detergents
- Plaster
- Petroleum products such as fuel, oil, and grease

Categories

- **Erosion Control** EC SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM \square Materials Pollution Control Legend: Primary Category
- Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

- Asphalt and concrete components
- Hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds
- Concrete compounds
- Other materials that may be detrimental if released to the environment

Limitations

- Space limitation may preclude indoor storage.
- Storage sheds often must meet building and fire code requirements.

Implementation

The following steps should be taken to minimize risk:

- Chemicals must be stored in water tight containers with appropriate secondary containment or in a storage shed.
- When a material storage area is located on bare soil, the area should be lined and bermed.
- Use containment pallets or other practical and available solutions, such as storing materials within newly constructed buildings or garages, to meet material storage requirements.
- Stack erodible landscape material on pallets and cover when not in use.
- Contain all fertilizers and other landscape materials when not in use.
- Temporary storage areas should be located away from vehicular traffic.
- Material Safety Data Sheets (MSDS) should be available on-site for all materials stored that have the potential to effect water quality.
- Construction site areas should be designated for material delivery and storage.
- Material delivery and storage areas should be located away from waterways, if possible.
 - Avoid transport near drainage paths or waterways.
 - Surround with earth berms or other appropriate containment BMP. See EC-9, Earth Dikes and Drainage Swales.
 - Place in an area that will be paved.
- Storage of reactive, ignitable, or flammable liquids must comply with the fire codes of your area. Contact the local Fire Marshal to review site materials, quantities, and proposed storage area to determine specific requirements. See the Flammable and Combustible Liquid Code, NFPA30.
- An up to date inventory of materials delivered and stored onsite should be kept.

- Hazardous materials storage onsite should be minimized.
- Hazardous materials should be handled as infrequently as possible.
- Keep ample spill cleanup supplies appropriate for the materials being stored. Ensure that cleanup supplies are in a conspicuous, labeled area.
- Employees and subcontractors should be trained on the proper material delivery and storage practices.
- Employees trained in emergency spill cleanup procedures must be present when dangerous materials or liquid chemicals are unloaded.
- If significant residual materials remain on the ground after construction is complete, properly remove and dispose of materials and any contaminated soil. See WM-7, Contaminated Soil Management. If the area is to be paved, pave as soon as materials are removed to stabilize the soil.

Material Storage Areas and Practices

- Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 should be stored in approved containers and drums and should not be overfilled. Containers and drums should be placed in temporary containment facilities for storage.
- A temporary containment facility should provide for a spill containment volume able to contain precipitation from a 25-year storm event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest container within its boundary, whichever is greater.
- A temporary containment facility should be impervious to the materials stored therein for a minimum contact time of 72 hours.
- A temporary containment facility should be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills should be collected and placed into drums. These liquids should be handled as a hazardous waste unless testing determines them to be non-hazardous. All collected liquids or non-hazardous liquids should be sent to an approved disposal site.
- Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access.
- Incompatible materials, such as chlorine and ammonia, should not be stored in the same temporary containment facility.
- Materials should be covered prior to, and during rain events.
- Materials should be stored in their original containers and the original product labels should be maintained in place in a legible condition. Damaged or otherwise illegible labels should be replaced immediately.

- Bagged and boxed materials should be stored on pallets and should not be allowed to accumulate on the ground. To provide protection from wind and rain throughout the rainy season, bagged and boxed materials should be covered during non-working days and prior to and during rain events.
- Stockpiles should be protected in accordance with WM-3, Stockpile Management.
- Materials should be stored indoors within existing structures or completely enclosed storage sheds when available.
- Proper storage instructions should be posted at all times in an open and conspicuous location.
- An ample supply of appropriate spill clean up material should be kept near storage areas.
- Also see WM-6, Hazardous Waste Management, for storing of hazardous wastes.

Material Delivery Practices

- Keep an accurate, up-to-date inventory of material delivered and stored onsite.
- Arrange for employees trained in emergency spill cleanup procedures to be present when dangerous materials or liquid chemicals are unloaded.

Spill Cleanup

- Contain and clean up any spill immediately.
- Properly remove and dispose of any hazardous materials or contaminated soil if significant residual materials remain on the ground after construction is complete. See WM-7, Contaminated Soil Management.
- See WM-4, Spill Prevention and Control, for spills of chemicals and/or hazardous materials.
- If spills or leaks of materials occur that are not contained and could discharge to surface waters, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required.

Cost

• The largest cost of implementation may be in the construction of a materials storage area that is covered and provides secondary containment.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Keep storage areas clean and well organized, including a current list of all materials onsite.
- Inspect labels on containers for legibility and accuracy.

• Repair or replace perimeter controls, containment structures, covers, and liners as needed to maintain proper function.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

Description and Purpose

Prevent or reduce the discharge of pollutants to the storm drain system or watercourses from material use by using alternative products, minimizing hazardous material use onsite, and training employees and subcontractors.

Suitable Applications

This BMP is suitable for use at all construction projects. These procedures apply when the following materials are used or prepared onsite:

- Pesticides and herbicides
- **Fertilizers**
- Detergents
- Petroleum products such as fuel, oil, and grease
- Asphalt and other concrete components
- Other hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds
- Other materials that may be detrimental if released to the environment

Categories

NS WM	Waste Management and Materials Pollution Control	\checkmark
	Management Control	
**	Non-Stormwater	
WE	Wind Frosion Control	
тс	Tracking Control	
SE	Sediment Control	
EC	Erosion Control	

Secondary Category

Targeted Constituents

Sediment	$\overline{\mathbf{A}}$
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

Limitations

Safer alternative building and construction products may not be available or suitable in every instance.

Implementation

The following steps should be taken to minimize risk:

- Minimize use of hazardous materials onsite.
- Follow manufacturer instructions regarding uses, protective equipment, ventilation, flammability, and mixing of chemicals.
- Train personnel who use pesticides. The California Department of Pesticide Regulation and county agricultural commissioners license pesticide dealers, certify pesticide applicators, and conduct onsite inspections.
- The preferred method of termiticide application is soil injection near the existing or proposed structure foundation/slab; however, if not feasible, soil drench application of termiticides should follow EPA label guidelines and the following recommendations (most of which are applicable to most pesticide applications):
 - Do not treat soil that is water-saturated or frozen.
 - Application shall not commence within 24-hours of a predicted precipitation event with a 40% or greater probability. Weather tracking must be performed on a daily basis prior to termiticide application and during the period of termiticide application.
 - Do not allow treatment chemicals to runoff from the target area. Apply proper quantity to prevent excess runoff. Provide containment for and divert stormwater from application areas using berms or diversion ditches during application.
 - Dry season: Do not apply within 10 feet of storm drains. Do not apply within 25 feet of aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or ponds; estuaries; and commercial fish farm ponds).
 - Wet season: Do not apply within 50 feet of storm drains or aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or ponds; estuaries; and commercial fish farm ponds) unless a vegetative buffer is present (if so, refer to dry season requirements).
 - Do not make on-grade applications when sustained wind speeds are above 10 mph (at application site) at nozzle end height.
 - Cover treatment site prior to a rain event in order to prevent run-off of the pesticide into non-target areas. The treated area should be limited to a size that can be backfilled and/or covered by the end of the work shift. Backfilling or covering of the treated area shall be done by the end of the same work shift in which the application is made.
 - The applicator must either cover the soil him/herself or provide written notification of the above requirement to the contractor on site and to the person commissioning the

application (if different than the contractor). If notice is provided to the contractor or the person commissioning the application, then they are responsible under the Federal Insecticide Fungicide, and Rodenticide Act (FIFRA) to ensure that: 1) if the concrete slab cannot be poured over the treated soil within 24 hours of application, the treated soil is covered with a waterproof covering (such as polyethylene sheeting), and 2) the treated soil is covered if precipitation is predicted to occur before the concrete slab is scheduled to be poured.

- Do not over-apply fertilizers, herbicides, and pesticides. Prepare only the amount needed. Follow the recommended usage instructions. Over-application is expensive and environmentally harmful. Unless on steep slopes, till fertilizers into the soil rather than hydraulic application. Apply surface dressings in several smaller applications, as opposed to one large application, to allow time for infiltration and to avoid excess material being carried offsite by runoff. Do not apply these chemicals before predicted rainfall.
- Train employees and subcontractors in proper material use.
- Supply Material Safety Data Sheets (MSDS) for all materials.
- Dispose of latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths, when thoroughly dry and are no longer hazardous, with other construction debris.
- Do not remove the original product label; it contains important safety and disposal information. Use the entire product before disposing of the container.
- Mix paint indoors or in a containment area. Never clean paintbrushes or rinse paint containers into a street, gutter, storm drain, or watercourse. Dispose of any paint thinners, residue, and sludge(s) that cannot be recycled, as hazardous waste.
- For water-based paint, clean brushes to the extent practicable, and rinse to a drain leading to a sanitary sewer where permitted or contain for proper disposal off site. For oil-based paints, clean brushes to the extent practicable, and filter and reuse thinners and solvents.
- Use recycled and less hazardous products when practical. Recycle residual paints, solvents, non-treated lumber, and other materials.
- Use materials only where and when needed to complete the construction activity. Use safer alternative materials as much as possible. Reduce or eliminate use of hazardous materials onsite when practical.
- Document the location, time, chemicals applied, and applicator's name and qualifications.
- Keep an ample supply of spill clean up material near use areas. Train employees in spill clean up procedures.
- Avoid exposing applied materials to rainfall and runoff unless sufficient time has been allowed for them to dry.
- Discontinue use of erodible landscape material within 2 days prior to a forecasted rain event and materials should be covered and/or bermed.

 Provide containment for material use areas such as masons' areas or paint mixing/preparation areas to prevent materials/pollutants from entering stormwater.

Costs

All of the above are low cost measures.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Ensure employees and subcontractors throughout the job are using appropriate practices.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992.

Comments on Risk Assessments Risk Reduction Options for Cypermethrin: Docket No. OPP–2005–0293; California Stormwater Quality Association (CASQA) letter to USEPA, 2006.Environmental Hazard and General Labeling for Pyrethroid Non-Agricultural Outdoor Products, EPA-HQ-OPP-2008-0331-0021; USEPA, 2008.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

Stockpile Management

Description and Purpose

Stockpile management procedures and practices are designed to reduce or eliminate air and stormwater pollution from stockpiles of soil, soil amendments, sand, paving materials such as Portland cement concrete (PCC) rubble, asphalt concrete (AC), asphalt concrete rubble, aggregate base, aggregate sub base or pre-mixed aggregate, asphalt minder (so called "cold mix" asphalt), and pressure treated wood.

Suitable Applications

Implement in all projects that stockpile soil and other loose materials.

Limitations

- Plastic sheeting as a stockpile protection is temporary and hard to manage in windy conditions. Where plastic is used, consider use of plastic tarps with nylon reinforcement which may be more durable than standard sheeting.
- Plastic sheeting can increase runoff volume due to lack of infiltration and potentially cause perimeter control failure.
- Plastic sheeting breaks down faster in sunlight.
- The use of Plastic materials and photodegradable plastics should be avoided.

Implementation

Protection of stockpiles is a year-round requirement. To properly manage stockpiles:

Treat Categories

EC	Erosion Control	
SE	Sediment Control	×
тс	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	×
WM	Waste Management and Materials Pollution Control	V
Legend:		
Primary Category		

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

- On larger sites, a minimum of 50 ft separation from concentrated flows of stormwater, drainage courses, and inlets is recommended.
- After 14 days of inactivity, a stockpile is non-active and requires further protection described below. All stockpiles are required to be protected as non-active stockpiles immediately if they are not scheduled to be used within 14 days.
- Protect all stockpiles from stormwater run-on using temporary perimeter sediment barriers such as compost berms (SE-13), temporary silt dikes (SE-12), fiber rolls (SE-5), silt fences (SE-1), sandbags (SE-8), gravel bags (SE-6), or biofilter bags (SE-14). Refer to the individual fact sheet for each of these controls for installation information.
- Implement wind erosion control practices as appropriate on all stockpiled material. For specific information, see WE-1, Wind Erosion Control.
- Manage stockpiles of contaminated soil in accordance with WM-7, Contaminated Soil Management.
- Place bagged materials on pallets and under cover.
- Ensure that stockpile coverings are installed securely to protect from wind and rain.
- Some plastic covers withstand weather and sunlight better than others. Select cover materials or methods based on anticipated duration of use.

Protection of Non-Active Stockpiles

A stockpile is considered non-active if it either is not used for 14 days or if it is scheduled not to be used for 14 days or more. Stockpiles need to be protected immediately if they are not scheduled to be used within 14 days. Non-active stockpiles of the identified materials should be protected as follows:

Soil stockpiles

- Soil stockpiles should be covered or protected with soil stabilization measures and a temporary perimeter sediment barrier at all times.
- Temporary vegetation should be considered for topsoil piles that will be stockpiled for extended periods.

Stockpiles of Portland cement concrete rubble, asphalt concrete, asphalt concrete rubble, aggregate base, or aggregate sub base

• Stockpiles should be covered and protected with a temporary perimeter sediment barrier at all times.

Stockpiles of "cold mix"

• Cold mix stockpiles should be placed on and covered with plastic sheeting or comparable material at all times and surrounded by a berm.

Stockpiles of fly ash, stucco, hydrated lime

• Stockpiles of materials that may raise the pH of runoff (i.e., basic materials) should be covered with plastic and surrounded by a berm.

Stockpiles/Storage of treated wood

• Treated wood should be covered with plastic sheeting or comparable material at all times and surrounded by a berm.

Protection of Active Stockpiles

A stockpile is active when it is being used or is scheduled to be used within 14 days of the previous use. Active stockpiles of the identified materials should be protected as follows:

- All stockpiles should be covered and protected with a temporary linear sediment barrier prior to the onset of precipitation.
- Stockpiles of "cold mix" and treated wood, and basic materials should be placed on and covered with plastic sheeting or comparable material and surrounded by a berm prior to the onset of precipitation.
- The downstream perimeter of an active stockpile should be protected with a linear sediment barrier or berm and runoff should be diverted around or away from the stockpile on the upstream perimeter.

Costs

For cost information associated with stockpile protection refer to the individual erosion or sediment control BMP fact sheet considered for implementation (For example, refer to SE-1 Silt Fence for installation of silt fence around the perimeter of a stockpile.)

Inspection and Maintenance

- Stockpiles must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- It may be necessary to inspect stockpiles covered with plastic sheeting more frequently during certain conditions (for example, high winds or extreme heat).
- Repair and/or replace perimeter controls and covers as needed to keep them functioning properly.
- Sediment shall be removed when it reaches one-third of the barrier height.

References

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Spill Prevention and Control

Description and Purpose

Prevent or reduce the discharge of pollutants to drainage systems or watercourses from leaks and spills by reducing the chance for spills, stopping the source of spills, containing and cleaning up spills, properly disposing of spill materials, and training employees.

This best management practice covers only spill prevention and control. However, WM-1, Materials Delivery and Storage, and WM-2, Material Use, also contain useful information, particularly on spill prevention. For information on wastes, see the waste management BMPs in this section.

Suitable Applications

This BMP is suitable for all construction projects. Spill control procedures are implemented anytime chemicals or hazardous substances are stored on the construction site, including the following materials:

- Soil stabilizers/binders
- Dust palliatives
- Herbicides
- Growth inhibitors
- Fertilizers
- Deicing/anti-icing chemicals

Categories

- **Erosion Control** EC SE Sediment Control Tracking Control TC WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM \square Materials Pollution Control Legend: Primary Objective
- Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

- Fuels
- Lubricants
- Other petroleum distillates

Limitations

- In some cases, it may be necessary to use a private spill cleanup company.
- This BMP applies to spills caused by the contractor and subcontractors.
- Procedures and practices presented in this BMP are general. Contractor should identify appropriate practices for the specific materials used or stored onsite

Implementation

The following steps will help reduce the stormwater impacts of leaks and spills:

Education

- Be aware that different materials pollute in different amounts. Make sure that each employee knows what a "significant spill" is for each material they use, and what is the appropriate response for "significant" and "insignificant" spills.
- Educate employees and subcontractors on potential dangers to humans and the environment from spills and leaks.
- Hold regular meetings to discuss and reinforce appropriate disposal procedures (incorporate into regular safety meetings).
- Establish a continuing education program to indoctrinate new employees.
- Have contractor's superintendent or representative oversee and enforce proper spill prevention and control measures.

General Measures

- To the extent that the work can be accomplished safely, spills of oil, petroleum products, substances listed under 40 CFR parts 110,117, and 302, and sanitary and septic wastes should be contained and cleaned up immediately.
- Store hazardous materials and wastes in covered containers and protect from vandalism.
- Place a stockpile of spill cleanup materials where it will be readily accessible.
- Train employees in spill prevention and cleanup.
- Designate responsible individuals to oversee and enforce control measures.
- Spills should be covered and protected from stormwater runon during rainfall to the extent that it doesn't compromise clean up activities.
- Do not bury or wash spills with water.

- Store and dispose of used clean up materials, contaminated materials, and recovered spill
 material that is no longer suitable for the intended purpose in conformance with the
 provisions in applicable BMPs.
- Do not allow water used for cleaning and decontamination to enter storm drains or watercourses. Collect and dispose of contaminated water in accordance with WM-10, Liquid Waste Management.
- Contain water overflow or minor water spillage and do not allow it to discharge into drainage facilities or watercourses.
- Place proper storage, cleanup, and spill reporting instructions for hazardous materials stored or used on the project site in an open, conspicuous, and accessible location.
- Keep waste storage areas clean, well organized, and equipped with ample cleanup supplies as appropriate for the materials being stored. Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function.

Cleanup

- Clean up leaks and spills immediately.
- Use a rag for small spills on paved surfaces, a damp mop for general cleanup, and absorbent
 material for larger spills. If the spilled material is hazardous, then the used cleanup
 materials are also hazardous and must be sent to either a certified laundry (rags) or disposed
 of as hazardous waste.
- Never hose down or bury dry material spills. Clean up as much of the material as possible and dispose of properly. See the waste management BMPs in this section for specific information.

Minor Spills

- Minor spills typically involve small quantities of oil, gasoline, paint, etc. which can be controlled by the first responder at the discovery of the spill.
- Use absorbent materials on small spills rather than hosing down or burying the spill.
- Absorbent materials should be promptly removed and disposed of properly.
- Follow the practice below for a minor spill:
 - Contain the spread of the spill.
 - Recover spilled materials.
 - Clean the contaminated area and properly dispose of contaminated materials.

Semi-Significant Spills

• Semi-significant spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities.

- Spills should be cleaned up immediately:
 - Contain spread of the spill.
 - Notify the project foreman immediately.
 - If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely.
 - If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil.
 - If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff.

Significant/Hazardous Spills

- For significant or hazardous spills that cannot be controlled by personnel in the immediate vicinity, the following steps should be taken:
 - Notify the local emergency response by dialing 911. In addition to 911, the contractor will notify the proper county officials. It is the contractor's responsibility to have all emergency phone numbers at the construction site.
 - Notify the Governor's Office of Emergency Services Warning Center, (916) 845-8911.
 - For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the contractor should notify the National Response Center at (800) 424-8802.
 - Notification should first be made by telephone and followed up with a written report.
 - The services of a spill's contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site.
 - Other agencies which may need to be consulted include, but are not limited to, the Fire Department, the Public Works Department, the Coast Guard, the Highway Patrol, the City/County Police Department, Department of Toxic Substances, California Division of Oil and Gas, Cal/OSHA, etc.

Reporting

- Report significant spills to local agencies, such as the Fire Department; they can assist in cleanup.
- Federal regulations require that any significant oil spill into a water body or onto an adjoining shoreline be reported to the National Response Center (NRC) at 800-424-8802 (24 hours).

Use the following measures related to specific activities:

Vehicle and Equipment Maintenance

- If maintenance must occur onsite, use a designated area and a secondary containment, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills.
- Regularly inspect onsite vehicles and equipment for leaks and repair immediately
- Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.
- Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.
- Place drip pans or absorbent materials under paving equipment when not in use.
- Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the absorbent materials promptly and dispose of properly.
- Promptly transfer used fluids to the proper waste or recycling drums. Don't leave full drip pans or other open containers lying around
- Oil filters disposed of in trashcans or dumpsters can leak oil and pollute stormwater. Place the oil filter in a funnel over a waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters.
- Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Vehicle and Equipment Fueling

- If fueling must occur onsite, use designate areas, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills.
- Discourage "topping off" of fuel tanks.
- Always use secondary containment, such as a drain pan, when fueling to catch spills/ leaks.

Costs

Prevention of leaks and spills is inexpensive. Treatment and/ or disposal of contaminated soil or water can be quite expensive.

Inspection and Maintenance

Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur.
- Keep ample supplies of spill control and cleanup materials onsite, near storage, unloading, and maintenance areas.
- Update your spill prevention and control plan and stock cleanup materials as changes occur in the types of chemicals onsite.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

Solid Waste Management

Description and Purpose

Solid waste management procedures and practices are designed to prevent or reduce the discharge of pollutants to stormwater from solid or construction waste by providing designated waste collection areas and containers, arranging for regular disposal, and training employees and subcontractors.

Suitable Applications

This BMP is suitable for construction sites where the following wastes are generated or stored:

- Solid waste generated from trees and shrubs removed during land clearing, demolition of existing structures (rubble), and building construction
- Packaging materials including wood, paper, and plastic
- Scrap or surplus building materials including scrap metals, rubber, plastic, glass pieces, and masonry products
- Domestic wastes including food containers such as beverage cans, coffee cups, paper bags, plastic wrappers, and cigarettes
- Construction wastes including brick, mortar, timber, steel and metal scraps, pipe and electrical cuttings, nonhazardous equipment parts, styrofoam and other materials used to transport and package construction materials

Categories

Primary Objective		
Legend:		
WM	Waste Management and Materials Pollution Control	V
NS	Non-Stormwater Management Control	
WE	Wind Erosion Control	
тс	Tracking Control	
SE	Sediment Control	
EC	Erosion Control	

Secondary Objective

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

 Highway planting wastes, including vegetative material, plant containers, and packaging materials

Limitations

Temporary stockpiling of certain construction wastes may not necessitate stringent drainage related controls during the non-rainy season or in desert areas with low rainfall.

Implementation

The following steps will help keep a clean site and reduce stormwater pollution:

- Select designated waste collection areas onsite.
- Inform trash-hauling contractors that you will accept only watertight dumpsters for onsite use. Inspect dumpsters for leaks and repair any dumpster that is not watertight.
- Locate containers in a covered area or in a secondary containment.
- Provide an adequate number of containers with lids or covers that can be placed over the container to keep rain out or to prevent loss of wastes when it is windy.
- Cover waste containers at the end of each work day and when it is raining.
- Plan for additional containers and more frequent pickup during the demolition phase of construction.
- Collect site trash daily, especially during rainy and windy conditions.
- Remove this solid waste promptly since erosion and sediment control devices tend to collect litter.
- Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris.
- Do not hose out dumpsters on the construction site. Leave dumpster cleaning to the trash hauling contractor.
- Arrange for regular waste collection before containers overflow.
- Clean up immediately if a container does spill.
- Make sure that construction waste is collected, removed, and disposed of only at authorized disposal areas.

Education

- Have the contractor's superintendent or representative oversee and enforce proper solid waste management procedures and practices.
- Instruct employees and subcontractors on identification of solid waste and hazardous waste.
- Educate employees and subcontractors on solid waste storage and disposal procedures.

- Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings).
- Require that employees and subcontractors follow solid waste handling and storage procedures.
- Prohibit littering by employees, subcontractors, and visitors.
- Minimize production of solid waste materials wherever possible.

Collection, Storage, and Disposal

- Littering on the project site should be prohibited.
- To prevent clogging of the storm drainage system, litter and debris removal from drainage grates, trash racks, and ditch lines should be a priority.
- Trash receptacles should be provided in the contractor's yard, field trailer areas, and at locations where workers congregate for lunch and break periods.
- Litter from work areas within the construction limits of the project site should be collected and placed in watertight dumpsters at least weekly, regardless of whether the litter was generated by the contractor, the public, or others. Collected litter and debris should not be placed in or next to drain inlets, stormwater drainage systems, or watercourses.
- Dumpsters of sufficient size and number should be provided to contain the solid waste generated by the project.
- Full dumpsters should be removed from the project site and the contents should be disposed of by the trash hauling contractor.
- Construction debris and waste should be removed from the site biweekly or more frequently as needed.
- Construction material visible to the public should be stored or stacked in an orderly manner.
- Stormwater runon should be prevented from contacting stored solid waste through the use of berms, dikes, or other temporary diversion structures or through the use of measures to elevate waste from site surfaces.
- Solid waste storage areas should be located at least 50 ft from drainage facilities and watercourses and should not be located in areas prone to flooding or ponding.
- Except during fair weather, construction and highway planting waste not stored in watertight dumpsters should be securely covered from wind and rain by covering the waste with tarps or plastic.
- Segregate potentially hazardous waste from non-hazardous construction site waste.
- Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris.

- For disposal of hazardous waste, see WM-6, Hazardous Waste Management. Have hazardous waste hauled to an appropriate disposal and/or recycling facility.
- Salvage or recycle useful vegetation debris, packaging and surplus building materials when practical. For example, trees and shrubs from land clearing can be used as a brush barrier, or converted into wood chips, then used as mulch on graded areas. Wood pallets, cardboard boxes, and construction scraps can also be recycled.

Costs

All of the above are low cost measures.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur
- Inspect construction waste area regularly.
- Arrange for regular waste collection.

References

Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

 \square

Description and Purpose

Prevent or reduce the discharge of pollutants to stormwater from hazardous waste through proper material use, waste disposal, and training of employees and subcontractors.

Suitable Applications

This best management practice (BMP) applies to all construction projects. Hazardous waste management practices are implemented on construction projects that generate waste from the use of:

- Petroleum Products -
- Concrete Curing Compounds Pesticides
- Palliatives
- Septic Wastes Paints
- Stains Solvents
- Wood Preservatives Roofing Tar
- Any materials deemed a hazardous waste in California, Title 22 Division 4.5, or listed in 40 CFR Parts 110, 117, 261, or 302

Categories

- ECErosion ControlSESediment ControlTCTracking ControlWEWind Erosion ControlNSNon-Stormwater
Management ControlWMWaste Management and
Materials Pollution ControlLegend:Katerials Pollution Control
- Primary Objective
- Secondary Objective

Targeted Constituents

Sediment	
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	\checkmark
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

Asphalt Products

Acids

In addition, sites with existing structures may contain wastes, which must be disposed of in accordance with federal, state, and local regulations. These wastes include:

- Sandblasting grit mixed with lead-, cadmium-, or chromium-based paints
- Asbestos
- PCBs (particularly in older transformers)

Limitations

- Hazardous waste that cannot be reused or recycled must be disposed of by a licensed hazardous waste hauler.
- Nothing in this BMP relieves the contractor from responsibility for compliance with federal, state, and local laws regarding storage, handling, transportation, and disposal of hazardous wastes.
- This BMP does not cover aerially deposited lead (ADL) soils. For ADL soils refer to WM-7, Contaminated Soil Management.

Implementation

The following steps will help reduce stormwater pollution from hazardous wastes:

Material Use

- Wastes should be stored in sealed containers constructed of a suitable material and should be labeled as required by Title 22 CCR, Division 4.5 and 49 CFR Parts 172, 173, 178, and 179.
- All hazardous waste should be stored, transported, and disposed as required in Title 22 CCR, Division 4.5 and 49 CFR 261-263.
- Waste containers should be stored in temporary containment facilities that should comply with the following requirements:
 - Temporary containment facility should provide for a spill containment volume equal to 1.5 times the volume of all containers able to contain precipitation from a 25-year storm event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest tank within its boundary, whichever is greater.
 - Temporary containment facility should be impervious to the materials stored there for a minimum contact time of 72 hours.
 - Temporary containment facilities should be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills should be placed into drums after each rainfall. These liquids should be handled as a hazardous waste unless testing determines them to be non-hazardous. Non-hazardous liquids should be sent to an approved disposal site.
 - Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access.

- Incompatible materials, such as chlorine and ammonia, should not be stored in the same temporary containment facility.
- Throughout the rainy season, temporary containment facilities should be covered during non-working days, and prior to rain events. Covered facilities may include use of plastic tarps for small facilities or constructed roofs with overhangs.
- Drums should not be overfilled, and wastes should not be mixed.
- Unless watertight, containers of dry waste should be stored on pallets.
- Do not over-apply herbicides and pesticides. Prepare only the amount needed. Follow the recommended usage instructions. Over application is expensive and environmentally harmful. Apply surface dressings in several smaller applications, as opposed to one large application. Allow time for infiltration and avoid excess material being carried offsite by runoff. Do not apply these chemicals just before it rains. People applying pesticides must be certified in accordance with federal and state regulations.
- Paint brushes and equipment for water and oil-based paints should be cleaned within a contained area and should not be allowed to contaminate site soils, watercourses, or drainage systems. Waste paints, thinners, solvents, residues, and sludges that cannot be recycled or reused should be disposed of as hazardous waste. When thoroughly dry, latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths should be disposed of as solid waste.
- Do not clean out brushes or rinse paint containers into the dirt, street, gutter, storm drain, or stream. "Paint out" brushes as much as possible. Rinse water-based paints to the sanitary sewer. Filter and reuse thinners and solvents. Dispose of excess oil-based paints and sludge as hazardous waste.
- The following actions should be taken with respect to temporary contaminant:
 - Ensure that adequate hazardous waste storage volume is available.
 - Ensure that hazardous waste collection containers are conveniently located.
 - Designate hazardous waste storage areas onsite away from storm drains or watercourses and away from moving vehicles and equipment to prevent accidental spills.
 - Minimize production or generation of hazardous materials and hazardous waste on the job site.
 - Use containment berms in fueling and maintenance areas and where the potential for spills is high.
 - Segregate potentially hazardous waste from non-hazardous construction site debris.
 - Keep liquid or semi-liquid hazardous waste in appropriate containers (closed drums or similar) and under cover.

- Clearly label all hazardous waste containers with the waste being stored and the date of accumulation.
- Place hazardous waste containers in secondary containment.
- Do not allow potentially hazardous waste materials to accumulate on the ground.
- Do not mix wastes.
- Use all of the product before disposing of the container.
- Do not remove the original product label; it contains important safety and disposal information.

Waste Recycling Disposal

- Select designated hazardous waste collection areas onsite.
- Hazardous materials and wastes should be stored in covered containers and protected from vandalism.
- Place hazardous waste containers in secondary containment.
- Do not mix wastes, this can cause chemical reactions, making recycling impossible and complicating disposal.
- Recycle any useful materials such as used oil or water-based paint.
- Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris.
- Arrange for regular waste collection before containers overflow.
- Make sure that hazardous waste (e.g., excess oil-based paint and sludge) is collected, removed, and disposed of only at authorized disposal areas.

Disposal Procedures

- Waste should be disposed of by a licensed hazardous waste transporter at an authorized and licensed disposal facility or recycling facility utilizing properly completed Uniform Hazardous Waste Manifest forms.
- A Department of Health Services certified laboratory should sample waste to determine the appropriate disposal facility.
- Properly dispose of rainwater in secondary containment that may have mixed with hazardous waste.
- Attention is directed to "Hazardous Material", "Contaminated Material", and "Aerially Deposited Lead" of the contract documents regarding the handling and disposal of hazardous materials.

Education

- Educate employees and subcontractors on hazardous waste storage and disposal procedures.
- Educate employees and subcontractors on potential dangers to humans and the environment from hazardous wastes.
- Instruct employees and subcontractors on safety procedures for common construction site hazardous wastes.
- Instruct employees and subcontractors in identification of hazardous and solid waste.
- Hold regular meetings to discuss and reinforce hazardous waste management procedures (incorporate into regular safety meetings).
- The contractor's superintendent or representative should oversee and enforce proper hazardous waste management procedures and practices.
- Make sure that hazardous waste is collected, removed, and disposed of only at authorized disposal areas.
- Warning signs should be placed in areas recently treated with chemicals.
- Place a stockpile of spill cleanup materials where it will be readily accessible.
- If a container does spill, clean up immediately.

Costs

All of the above are low cost measures.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur
- Hazardous waste should be regularly collected.
- A foreman or construction supervisor should monitor onsite hazardous waste storage and disposal procedures.
- Waste storage areas should be kept clean, well organized, and equipped with ample cleanup supplies as appropriate for the materials being stored.
- Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function.

- Hazardous spills should be cleaned up and reported in conformance with the applicable Material Safety Data Sheet (MSDS) and the instructions posted at the project site.
- The National Response Center, at (800) 424-8802, should be notified of spills of federal reportable quantities in conformance with the requirements in 40 CFR parts 110, 117, and 302. Also notify the Governors Office of Emergency Services Warning Center at (916) 845-8911.
- A copy of the hazardous waste manifests should be provided.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

Contaminated Soil Management

Description and Purpose

Prevent or reduce the discharge of pollutants to stormwater from contaminated soil and highly acidic or alkaline soils by conducting pre-construction surveys, inspecting excavations regularly, and remediating contaminated soil promptly.

Suitable Applications

Contaminated soil management is implemented on construction projects in highly urbanized or industrial areas where soil contamination may have occurred due to spills, illicit discharges, aerial deposition, past use and leaks from underground storage tanks.

Limitations

Contaminated soils that cannot be treated onsite must be disposed of offsite by a licensed hazardous waste hauler. The presence of contaminated soil may indicate contaminated water as well. See NS-2, Dewatering Operations, for more information.

The procedures and practices presented in this BMP are general. The contractor should identify appropriate practices and procedures for the specific contaminants known to exist or discovered onsite.

Implementation

Most owners and developers conduct pre-construction environmental assessments as a matter of routine. Contaminated soils are often identified during project planning and development with known locations identified in the plans, specifications and in the SWPPP. The contractor should review applicable reports and investigate appropriate call-outs in the

Categories

Primary Objective		
Legend:		
WM	Waste Management and Materials Pollution Control	V
NS	Non-Stormwater Management Control	
WE	Wind Erosion Control	
тс	Tracking Control	
SE	Sediment Control	
EC	Erosion Control	

Secondary Objective

Targeted Constituents

Sediment	
Nutrients	\checkmark
Trash	\checkmark
Metals	\checkmark
Bacteria	\checkmark
Oil and Grease	\checkmark
Organics	\checkmark

Potential Alternatives

None

plans, specifications, and SWPPP. Recent court rulings holding contractors liable for cleanup costs when they unknowingly move contaminated soil highlight the need for contractors to confirm a site assessment is completed before earth moving begins.

The following steps will help reduce stormwater pollution from contaminated soil:

- Conduct thorough, pre-construction inspections of the site and review documents related to the site. If inspection or reviews indicated presence of contaminated soils, develop a plan before starting work.
- Look for contaminated soil as evidenced by discoloration, odors, differences in soil properties, abandoned underground tanks or pipes, or buried debris.
- Prevent leaks and spills. Contaminated soil can be expensive to treat and dispose of properly. However, addressing the problem before construction is much less expensive than after the structures are in place.
- The contractor may further identify contaminated soils by investigating:
 - Past site uses and activities
 - Detected or undetected spills and leaks
 - Acid or alkaline solutions from exposed soil or rock formations high in acid or alkaline forming elements
 - Contaminated soil as evidenced by discoloration, odors, differences in soil properties, abandoned underground tanks or pipes, or buried debris.
 - Suspected soils should be tested at a certified laboratory.

Education

- Have employees and subcontractors complete a safety training program which meets 29 CFR 1910.120 and 8 CCR 5192 covering the potential hazards as identified, prior to performing any excavation work at the locations containing material classified as hazardous.
- Educate employees and subcontractors in identification of contaminated soil and on contaminated soil handling and disposal procedures.
- Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings).

Handling Procedures for Material with Aerially Deposited Lead (ADL)

- Materials from areas designated as containing (ADL) may, if allowed by the contract special provisions, be excavated, transported, and used in the construction of embankments and/or backfill.
- Excavation, transportation, and placement operations should result in no visible dust.
- Caution should be exercised to prevent spillage of lead containing material during transport.

• Quality should be monitored during excavation of soils contaminated with lead.

Handling Procedures for Contaminated Soils

- Minimize onsite storage. Contaminated soil should be disposed of properly in accordance with all applicable regulations. All hazardous waste storage will comply with the requirements in Title 22, CCR, Sections 66265.250 to 66265.260.
- Test suspected soils at an approved certified laboratory.
- Work with the local regulatory agencies to develop options for treatment or disposal if the soil is contaminated.
- Avoid temporary stockpiling of contaminated soils or hazardous material.
- Take the following precautions if temporary stockpiling is necessary:
 - Cover the stockpile with plastic sheeting or tarps.
 - Install a berm around the stockpile to prevent runoff from leaving the area.
 - Do not stockpile in or near storm drains or watercourses.
- Remove contaminated material and hazardous material on exteriors of transport vehicles and place either into the current transport vehicle or into the excavation prior to the vehicle leaving the exclusion zone.
- Monitor the air quality continuously during excavation operations at all locations containing hazardous material.
- Procure all permits and licenses, pay all charges and fees, and give all notices necessary and incident to the due and lawful prosecution of the work, including registration for transporting vehicles carrying the contaminated material and the hazardous material.
- Collect water from decontamination procedures and treat or dispose of it at an appropriate disposal site.
- Collect non-reusable protective equipment, once used by any personnel, and dispose of at an appropriate disposal site.
- Install temporary security fence to surround and secure the exclusion zone. Remove fencing when no longer needed.
- Excavate, transport, and dispose of contaminated material and hazardous material in accordance with the rules and regulations of the following agencies (the specifications of these agencies supersede the procedures outlined in this BMP):
 - United States Department of Transportation (USDOT)
 - United States Environmental Protection Agency (USEPA)
 - California Environmental Protection Agency (CAL-EPA)

- California Division of Occupation Safety and Health Administration (CAL-OSHA)
- Local regulatory agencies

Procedures for Underground Storage Tank Removals

- Prior to commencing tank removal operations, obtain the required underground storage tank removal permits and approval from the federal, state, and local agencies that have jurisdiction over such work.
- To determine if it contains hazardous substances, arrange to have tested, any liquid or sludge found in the underground tank prior to its removal.
- Following the tank removal, take soil samples beneath the excavated tank and perform analysis as required by the local agency representative(s).
- The underground storage tank, any liquid or sludge found within the tank, and all contaminated substances and hazardous substances removed during the tank removal and transported to disposal facilities permitted to accept such waste.

Water Control

- All necessary precautions and preventive measures should be taken to prevent the flow of water, including ground water, from mixing with hazardous substances or underground storage tank excavations. Such preventative measures may consist of, but are not limited to, berms, cofferdams, grout curtains, freeze walls, and seal course concrete or any combination thereof.
- If water does enter an excavation and becomes contaminated, such water, when necessary to proceed with the work, should be discharged to clean, closed top, watertight transportable holding tanks, treated, and disposed of in accordance with federal, state, and local laws.

Costs

Prevention of leaks and spills is inexpensive. Treatment or disposal of contaminated soil can be quite expensive.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Arrange for contractor's Water Pollution Control Manager, foreman, and/or construction supervisor to monitor onsite contaminated soil storage and disposal procedures.
- Monitor air quality continuously during excavation operations at all locations containing hazardous material.
- Coordinate contaminated soils and hazardous substances/waste management with the appropriate federal, state, and local agencies.
• Implement WM-4, Spill Prevention and Control, to prevent leaks and spills as much as possible.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

Concrete Waste Management

Description and Purpose

Prevent the discharge of pollutants to stormwater from concrete waste by conducting washout onsite or offsite in a designated area, and by employee and subcontractor training.

The General Permit incorporates Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project's risk level and if you are subject to these requirements).

Many types of construction materials, including mortar, concrete, stucco, cement and block and their associated wastes have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows and raising pH to levels outside the accepted range.

Suitable Applications

Concrete waste management procedures and practices are implemented on construction projects where:

- Concrete is used as a construction material or where concrete dust and debris result from demolition activities.
- Slurries containing Portland cement concrete (PCC) are generated, such as from saw cutting, coring, grinding, grooving, and hydro-concrete demolition.
- Concrete trucks and other concrete-coated equipment are washed onsite.

Categories

EC	Erosion Control					
SE	Sediment Control					
тс	Tracking Control					
WE	Wind Erosion Control					
NS	Non-Stormwater Management Control	×				
WM	Waste Management and Materials Pollution Control	V				
Legend:						
Primary Category						

Secondary Category

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	
Metals	\checkmark
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- Mortar-mixing stations exist.
- Stucco mixing and spraying.
- See also NS-8, Vehicle and Equipment Cleaning.

Limitations

- Offsite washout of concrete wastes may not always be possible.
- Multiple washouts may be needed to assure adequate capacity and to allow for evaporation.

Implementation

The following steps will help reduce stormwater pollution from concrete wastes:

- Incorporate requirements for concrete waste management into material supplier and subcontractor agreements.
- Store dry and wet materials under cover, away from drainage areas. Refer to WM-1, Material Delivery and Storage for more information.
- Avoid mixing excess amounts of concrete.
- Perform washout of concrete trucks in designated areas only, where washout will not reach stormwater.
- Do not wash out concrete trucks into storm drains, open ditches, streets, streams or onto the ground. Trucks should always be washed out into designated facilities.
- Do not allow excess concrete to be dumped onsite, except in designated areas.
- For onsite washout:
 - On larger sites, it is recommended to locate washout areas at least 50 feet from storm drains, open ditches, or water bodies. Do not allow runoff from this area by constructing a temporary pit or bermed area large enough for liquid and solid waste.
 - Washout wastes into the temporary washout where the concrete can set, be broken up, and then disposed properly.
 - Washouts shall be implemented in a manner that prevents leaching to underlying soils. Washout containers must be water tight and washouts on or in the ground must be lined with a suitable impervious liner, typically a plastic type material.
- Do not wash sweepings from exposed aggregate concrete into the street or storm drain.
 Collect and return sweepings to aggregate base stockpile or dispose in the trash.
- See typical concrete washout installation details at the end of this fact sheet.

Education

• Educate employees, subcontractors, and suppliers on the concrete waste management techniques described herein.

- Arrange for contractor's superintendent or representative to oversee and enforce concrete waste management procedures.
- Discuss the concrete management techniques described in this BMP (such as handling of concrete waste and washout) with the ready-mix concrete supplier before any deliveries are made.

Concrete Demolition Wastes

- Stockpile concrete demolition waste in accordance with BMP WM-3, Stockpile Management.
- Dispose of or recycle hardened concrete waste in accordance with applicable federal, state or local regulations.

Concrete Slurry Wastes

- PCC and AC waste should not be allowed to enter storm drains or watercourses.
- PCC and AC waste should be collected and disposed of or placed in a temporary concrete washout facility (as described in Onsite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below).
- A foreman or construction supervisor should monitor onsite concrete working tasks, such as saw cutting, coring, grinding and grooving to ensure proper methods are implemented.
- Saw-cut concrete slurry should not be allowed to enter storm drains or watercourses. Residue from grinding operations should be picked up by means of a vacuum attachment to the grinding machine or by sweeping. Saw cutting residue should not be allowed to flow across the pavement and should not be left on the surface of the pavement. See also NS-3, Paving and Grinding Operations; and WM-10, Liquid Waste Management.
- Concrete slurry residue should be disposed in a temporary washout facility (as described in Onsite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below) and allowed to dry. Dispose of dry slurry residue in accordance with WM-5, Solid Waste Management.

Onsite Temporary Concrete Washout Facility, Transit Truck Washout Procedures

- Temporary concrete washout facilities should be located a minimum of 50 ft from storm drain inlets, open drainage facilities, and watercourses. Each facility should be located away from construction traffic or access areas to prevent disturbance or tracking.
- A sign should be installed adjacent to each washout facility to inform concrete equipment operators to utilize the proper facilities.
- Temporary concrete washout facilities should be constructed above grade or below grade at the option of the contractor. Temporary concrete washout facilities should be constructed and maintained in sufficient quantity and size to contain all liquid and concrete waste generated by washout operations.

- Temporary washout facilities should have a temporary pit or bermed areas of sufficient volume to completely contain all liquid and waste concrete materials generated during washout procedures.
- Temporary washout facilities should be lined to prevent discharge to the underlying ground or surrounding area.
- Washout of concrete trucks should be performed in designated areas only.
- Only concrete from mixer truck chutes should be washed into concrete wash out.
- Concrete washout from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated washout area or properly disposed of or recycled offsite.
- Once concrete wastes are washed into the designated area and allowed to harden, the concrete should be broken up, removed, and disposed of per WM-5, Solid Waste Management. Dispose of or recycle hardened concrete on a regular basis.
- Temporary Concrete Washout Facility (Type Above Grade)
 - Temporary concrete washout facility (type above grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft; however, smaller sites or jobs may only need a smaller washout facility. With any washout, always maintain a sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations.
 - Materials used to construct the washout area should conform to the provisions detailed in their respective BMPs (e.g., SE-8 Sandbag Barrier).
 - Plastic lining material should be a minimum of 10 mil in polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material.
 - Alternatively, portable removable containers can be used as above grade concrete washouts. Also called a "roll-off"; this concrete washout facility should be properly sealed to prevent leakage and should be removed from the site and replaced when the container reaches 75% capacity.
- Temporary Concrete Washout Facility (Type Below Grade)
 - Temporary concrete washout facilities (type below grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft. The quantity and volume should be sufficient to contain all liquid and concrete waste generated by washout operations.
 - Lath and flagging should be commercial type.
 - Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material.

- The base of a washout facility should be free of rock or debris that may damage a plastic liner.

Removal of Temporary Concrete Washout Facilities

- When temporary concrete washout facilities are no longer required for the work, the hardened concrete should be removed and properly disposed or recycled in accordance with federal, state or local regulations. Materials used to construct temporary concrete washout facilities should be removed from the site of the work and properly disposed or recycled in accordance with federal, state or local regulations.
- Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities should be backfilled and repaired.

Costs

All of the above are low cost measures. Roll-off concrete washout facilities can be more costly than other measures due to removal and replacement; however, provide a cleaner alternative to traditional washouts. The type of washout facility, size, and availability of materials will determine the cost of the washout.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Temporary concrete washout facilities should be maintained to provide adequate holding capacity with a minimum freeboard of 4 in. for above grade facilities and 12 in. for below grade facilities. Maintaining temporary concrete washout facilities should include removing and disposing of hardened concrete and returning the facilities to a functional condition. Hardened concrete materials should be removed and properly disposed or recycled in accordance with federal, state or local regulations.
- Washout facilities must be cleaned, or new facilities must be constructed and ready for use once the washout is 75% full.
- Inspect washout facilities for damage (e.g. torn liner, evidence of leaks, signage, etc.). Repair all identified damage.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000, Updated March 2003.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

Concrete Waste Management

Sanitary/Septic Waste Management WM-9

Description and Purpose

Proper sanitary and septic waste management prevent the discharge of pollutants to stormwater from sanitary and septic waste by providing convenient, well-maintained facilities, and arranging for regular service and disposal.

Suitable Applications

Sanitary septic waste management practices are suitable for use at all construction sites that use temporary or portable sanitary and septic waste systems.

Limitations

None identified.

Implementation

Sanitary or septic wastes should be treated or disposed of in accordance with state and local requirements. In many cases, one contract with a local facility supplier will be all that it takes to make sure sanitary wastes are properly disposed.

Storage and Disposal Procedures

 Temporary sanitary facilities should be located away from drainage facilities, watercourses, and from traffic circulation. If site conditions allow, place portable facilities a minimum of 50 feet from drainage conveyances and traffic areas. When subjected to high winds or risk of high winds, temporary sanitary facilities should be secured to prevent overturning.

Categories

WM	Waste Management and Materials Pollution Control
NS	Non-Stormwater Management Control
WE	Wind Erosion Control
тс	Tracking Control
SE	Sediment Control
EC	Erosion Control

 $\mathbf{\nabla}$

Secondary Category

Targeted Constituents

Sediment	
Nutrients	\checkmark
Trash	\checkmark
Metals	
Bacteria	\checkmark
Oil and Grease	
Organics	\checkmark

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- Temporary sanitary facilities must be equipped with containment to prevent discharge of pollutants to the stormwater drainage system of the receiving water.
- Consider safety as well as environmental implications before placing temporary sanitary facilities.
- Wastewater should not be discharged or buried within the project site.
- Sanitary and septic systems that discharge directly into sanitary sewer systems, where
 permissible, should comply with the local health agency, city, county, and sewer district
 requirements.
- Only reputable, licensed sanitary and septic waste haulers should be used.
- Sanitary facilities should be located in a convenient location.
- Temporary septic systems should treat wastes to appropriate levels before discharging.
- If using an onsite disposal system (OSDS), such as a septic system, local health agency requirements must be followed.
- Temporary sanitary facilities that discharge to the sanitary sewer system should be properly connected to avoid illicit discharges.
- Sanitary and septic facilities should be maintained in good working order by a licensed service.
- Regular waste collection by a licensed hauler should be arranged before facilities overflow.
- If a spill does occur from a temporary sanitary facility, follow federal, state and local regulations for containment and clean-up.

Education

- Educate employees, subcontractors, and suppliers on sanitary and septic waste storage and disposal procedures.
- Educate employees, subcontractors, and suppliers of potential dangers to humans and the environment from sanitary and septic wastes.
- Instruct employees, subcontractors, and suppliers in identification of sanitary and septic waste.
- Hold regular meetings to discuss and reinforce the use of sanitary facilities (incorporate into regular safety meetings).
- Establish a continuing education program to indoctrinate new employees.

Costs

All of the above are low cost measures.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Arrange for regular waste collection.
- If high winds are expected, portable sanitary facilities must be secured with spikes or weighed down to prevent over turning.
- If spills or leaks from sanitary or septic facilities occur that are not contained and discharge from the site, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required.

References

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

APPENDIX I CONSTRUCTION SITE INSPECTION REPORT FORMS

Risk Level 1, 2, 3 Visual Inspection Field Log Sheet									
Date and Time of Insp	ection:				Rep	ort Date:			
Inspection Type:	🗆 Weeki	Pre	Pre Qualifying ecipitation ent (QPE)		During QPE	□ Post Q	•	□ Dewatering Discharge	
Site Information									
Construction Site Nan	Construction Site Name:								
Construction stage an completed activities:	d							oximate area posed site:	
			Weather and	l Ob	servations				
Date Rain Predicted to	o Occur:				Predicted % Predicted q			vitation (PoP): ation (QPF):	
Estimate storm b	eginning:	c	Estimate storn duration:	ſ	Estimate	e time since		Rain gauge reading:_	
(date and ti	me)		(hours)		(day	s or hours)	(inches)	
Observations: If yes id	Observations: If yes identify location								
Odors	Yes □	No 🗆]						
Floating material	Yes □	No 🗆]						
Suspended Material	Yes □	No 🗆]						
Sheen	Yes □	No 🗆]						
Discolorations	Yes □	No 🗆							
Turbidity	Yes 🗆	No 🗆							
Site Inspections									
Outfalls or BMF						ciencies N		<u> </u>	
(1	add additic	onal sh	eets or attached	deta	ailed BMP Ins	spection Cl	necklist	s)	
Photos Taken:] No □	Ph	oto Referenc	e IDs:					
Co	Corrective Actions Identified (note if SWPPP/REAP change is needed)								
Inspector Information									
Inspector Name:					Inspector T	tle:			
Signature:						Date:			

APPENDIX J TRAINING AND REPORTING DOCUMENTATION

Contractor Personnel Training Log

Stormwater Management Training Log and Documentation

Project Name: _____

WDID #:_____

Stormwater Management Topic: (check as appropriate)

 \Box Good Housekeeping BMPs \Box Erosion Control BMPs

□ Sediment Control BMPs □ Tracking Control

 \Box Non-Stormwater Management BMPs $\ \Box$ Waste Management & Pollution Control BMPs

 \Box BMP Implementation Activities \Box Advanced BMPs

 \Box Identification of QSPs and QSP Delegates

Training Objective:

Date: _____

Training Length (hours): _____

Instructor:

Attendee Roster (Attach additional forms if necessary)

Name	Company	Phone

QSP Delegate Training Log

Stormwater Management Training Log and Documentation

Project Name: _____

WDID #:_____

QSP Delegate Name: _____

Delegated Responsibilities:

- \Box Stormwater Visual Inspections
- \Box Sampling
- \Box BMP Inspections
- \Box BMP Maintenance and Repair

Foundational Training

Торіс	Date Completed	QSP Trainer
\Box Roles and Responsibilities		
□ Forecast Information		
□ Documentation and Reporting Procedures		

Site-Specific Training

Торіс	Date Completed	QSP Trainer
\Box Visual Inspections		
□ Sample Collection Procedures		
□ Sample Reporting Procedures		
□ BMP Implementation		

As needed, attach proof of external training (e.g., course completion certificates, credentials for the QSP Delegate).

APPENDIX K RESPONSIBLE PARTIES

Qualified SWPPP Developer, QSD:

Lane Engineers, Inc. 979 North Blackstone Street Tulare, CA 93274 Phone: 559-688-5263 Wa Vang, PE,QSD

Qualified SWPPP Practitioner, QSP:

CERTIFICATE OF TRAINING

QUALIFIED SWPPP PRACTITIONER (OSP) QUALIFIED SWPPP DEVELOPER (QSD)

Wa Vang

Jan 22, 2024 - Jan 29, 2026

Certificate # 22309

California Stormwater Quality Association and California Construction General Permit Training Team

APPENDIX L LIST OF CONTRACTORS AND SUBCONTRACTORS

APPENDIX M EXAMPLE STORM EVENT MONITORING FORMS

Risk Level 1, 2, 3 Visual Inspection Field Log Sheet									
Date and Time of Insp	ection:				Rep	ort Date:			
Inspection Type:	🗆 Weeki	Pre	Pre Qualifying ecipitation ent (QPE)		During QPE	□ Post Q	•	□ Dewatering Discharge	
Site Information									
Construction Site Nan	Construction Site Name:								
Construction stage an completed activities:	d							oximate area posed site:	
			Weather and	l Ob	servations				
Date Rain Predicted to	o Occur:				Predicted % Predicted q			vitation (PoP): ation (QPF):	
Estimate storm b	eginning:	c	Estimate storn duration:	ſ	Estimate	e time since		Rain gauge reading:_	
(date and ti	me)		(hours)		(day	s or hours)	(inches)	
Observations: If yes id	Observations: If yes identify location								
Odors	Yes □	No 🗆]						
Floating material	Yes □	No 🗆]						
Suspended Material	Yes □	No 🗆]						
Sheen	Yes □	No 🗆]						
Discolorations	Yes □	No 🗆							
Turbidity	Yes 🗆	No 🗆							
Site Inspections									
Outfalls or BMF						ciencies N		<u> </u>	
(1	add additic	onal sh	eets or attached	deta	ailed BMP Ins	spection Cl	necklist	s)	
Photos Taken:] No □	Ph	oto Referenc	e IDs:					
Co	Corrective Actions Identified (note if SWPPP/REAP change is needed)								
Inspector Information									
Inspector Name:					Inspector T	tle:			
Signature:						Date:			

Risk Level 1, 2, 3 Effluent Sampling Field Log Sheets							
Construction Site Name	:		Date:	0 0		e Start:	
Sampler:					1		
Sampling Event Type:		water	Dewate	ering Discharge		-visible pollutant	
			Field Met	er Calibration			
pH Meter ID No./Desc.: Calibration Date/Time:			Turbidity	Meter ID No./De on Date/Time:	SC.:		
		Field p		bidity Measuren	nents		
Discharge Location De	escription	1	pH	Turbidi		Time	
					.,		
		-		ples Collected			
Discharge Location De	escription		Sa	mple Type		Time	
Additional Sampling No	tes:						
Time End:							

APPENDIX N ATTACHMENT D: TRADITIONAL CONSTRUCTION RISK LEVEL REQUIREMENTS

ATTACHMENT D

TRADITIONAL CONSTRUCTION RISK LEVEL REQUIREMENTS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) GENERAL PERMIT FOR STORMWATER DISCHARGES ASSOCIATED WITH CONSTRUCTION AND LAND DISTURBANCE ACTIVITIES (GENERAL PERMIT)

I. GENERAL REQUIREMENTS

Risk Level 1, 2, and 3 dischargers shall implement the following minimum best management practices (BMPs) to reduce or prevent pollutants in construction stormwater discharges, monitoring requirements, and reporting requirements. If a requirement in this attachment does not specify a specific Risk Level, then the requirement applies to Risk Level 1, 2, and 3 dischargers.

II. MINIMUM BEST MANAGEMENT PRACTICES

II.A. Good Site Management "Housekeeping"

- II.A.1. Dischargers shall implement good site management (i.e., "housekeeping") measures for construction materials that could potentially be a threat to water quality if discharged or exposed to stormwater. At a minimum, dischargers shall implement the following good housekeeping measures:
 - a. Identify and protect the products used and/or expected to be used and the end products that are produced and/or expected to be produced from exposure to stormwater. Products do not include materials and equipment that are designed to be outdoors and exposed to environmental conditions (e.g., poles, equipment pads, cabinets, conductors, insulators, bricks, roofing, and siding);
 - b. Apply BMPs to erodible stockpiled construction materials (e.g., soil, spoils, flyash, stucco, hydrated lime) to prevent erosion and pollutant transport;
 - Store chemicals in watertight containers with secondary containment to prevent any spillage or leakage or store in a completely enclosed storage area;
 - d. Minimize exposure of construction materials to precipitation. Construction materials do not include materials and equipment that are designed to be outdoors and exposed to environmental conditions (e.g., poles, equipment pads, cabinets, conductors, insulators, bricks);
 - e. Implement BMPs to control the off-site tracking of sediment and loose construction and landscape materials; and
 - f. Implement BMPs to control the discharge of plastic materials and limit the use of plastic materials when more sustainable, environmentally friendly alternatives exist. Dischargers shall consider the use of plastic materials resistant to solar degradation where plastic materials are deemed necessary.

- II.A.2. Dischargers shall implement good housekeeping measures for waste management, which, at a minimum, shall consist of the following:
 - a. Minimize the discharge of pollutants from equipment and vehicle washing, wheel wash water, masonry wash waters, and other wash waters. Wash waters shall be captured and treated prior to discharge, or disposed of at a permitted facility that can accept that waste, to mitigate impacts to water quality;
 - b. Provide containment (e.g., secondary containment) of sanitation facilities (e.g., portable toilets) to prevent discharges of pollutants to the stormwater drainage system or receiving water;
 - c. Clean or replace sanitation facilities and inspect them regularly for leaks and spills;
 - d. Keep debris or trash in waste containers if it is subject to transport from the site by wind or runoff;
 - e. Cover waste disposal containers at the end of every business day and during a precipitation event;
 - f. Prevent discharges from waste disposal containers to the stormwater drainage system or receiving water (e.g., containers with solid bottoms and regular maintenance);
 - g. Contain and securely protect stockpiled waste material from wind and precipitation unless actively being used; and
 - h. Secure and contain concrete washout areas and other washout areas that may contain additional pollutants to minimize discharge into the underlying soil and onto surrounding areas. Washout areas shall be covered prior to and during a precipitation event.
- II.A.3. Dischargers shall implement good housekeeping for vehicle/equipment storage and maintenance, which shall consist of the following:
 - a. Contain fuel, grease, and oil to prevent them from leaking into ground, storm drains, or surface waters;
 - b. Place all equipment or vehicles, which are to be fueled, maintained, and/or stored in a designated area with BMPs installed; and
 - c. Clean leaks immediately and dispose of leaked materials properly in accordance with the law.
- II.A.4. Dischargers shall implement good housekeeping for landscape materials, which shall consist of the following:
 - Contain and protect stockpiled materials such as mulches and topsoil, or other erodible landscape materials, from wind and precipitation unless being actively used;
 - b. Contain packaged landscape materials (e.g., fertilizers) when they are not being actively used;

- c. Discontinue the application of any erodible landscape material at least 2 days before a forecasted precipitation event as defined in Attachment B or during periods of precipitation; and
- d. Apply erodible landscape material at quantities and rates in accordance with manufacturer recommendations or based on written specifications by knowledgeable and experienced field personnel;
- II.A.5. Dischargers shall implement good housekeeping measures on the construction site to control the aerial deposition of site materials and from site operations. Such particulates can include, but are not limited to, metals, nutrients, organics, sediment, other particulates, and trash.
- II.A.6. Dischargers shall document all housekeeping BMPs in the SWPPP that correspond to the nature and phase of the construction activities. Construction phases at traditional land development projects include demolition and predevelopment site preparation phase, grading and land development phase, streets and utilities phase, vertical construction phase, and final landscaping and site stabilization phase.

II.B. Non-Stormwater Management

- II.B.1. Dischargers shall implement the following measures to control all non-stormwater discharges during construction:
 - a. Wash vehicles in such a manner as to prevent non-stormwater discharges to surface waters or municipal separate sewer system drainage systems;
 - b. Clean streets in such a manner as to prevent unauthorized non-stormwater discharges from reaching surface water or municipal separate sewer system drainage systems; and
 - c. Eliminate any non-stormwater discharges not authorized in Section IV.A of this General Permit's Order.

II.C. Preserve Existing Topsoil

- II.C.1. Dischargers shall preserve existing topsoil, unless infeasible, through the following practices:
 - a. Stockpiling existing topsoil, or transferring topsoil to other locations, to deploy and reestablish vegetation prior to termination of coverage; and
 - b. Stabilizing disturbed topsoil during construction.

Preserving existing topsoil is not required where the intended function of a specific area of the site dictates that the topsoil be disturbed or removed.¹

¹ Examples may include the removal of topsoil containing invasive seedbanks, lack of space to stockpile topsoil, and sites that are designed to be highly impervious after construction with little to no vegetation intended to remain.

II.D. Erosion Control

- II.D.1. Dischargers shall implement the following practices to eliminate or minimize site erosion. Erosion control BMPs (except for sprayed products) shall be available on-site or at a nearby location (e.g., common lay-down yard), year-round with trained persons able to deploy the product under the direction of the Qualified SWPPP Practitioner:
 - a. Implement effective wind erosion control;
 - b. Preserve existing vegetation;
 - c. Minimize the amount of soil exposed during construction activity;
 - d. Minimize the disturbance of steep slopes;
 - e. Schedule earthwork to minimize the amount of disturbed area when feasible;
 - f. Immediately initiate stabilization for disturbed areas whenever earth disturbing activities have permanently ceased on any portion of the site, or temporarily ceased on any portion of the site and will not resume for a period exceeding 14 calendar days;²
 - g. Minimize soil compaction in areas other than where the intended function of a specific area dictates that it be compacted;
 - h. Reestablish vegetation or non-vegetative erosion controls as soon as practicable;
 - i. If feasible, divert up gradient run-on water from contacting areas of exposed soils disturbed by construction activities or convey run-on through the site in a manner that prevents erosion from areas of construction and does not compromise the effectiveness of erosion, sediment, and perimeter controls;
 - j. Run-on water flowing onto a site from off-site areas may be separated from a site's stormwater discharge to eliminate commingled contribution. Run-on diversion shall occur prior to entering an area affected by construction activity. Run-on flow diversion shall be conveyed through or around the construction activity in plastic pipe or an engineered conveyance channel in a manner that will not cause erosion due to flow diversion. Run-on combined with a site's stormwater discharge is considered a stormwater discharge.
 - k. Limit the use of plastic materials when more sustainable, environmentally friendly alternatives exist. Where plastic materials are deemed necessary, the

² In arid, semiarid, and drought-stricken areas where initiating vegetative stabilization measures immediately is infeasible, alternative stabilization measures shall be employed as specified by the Regional Water Board. Stabilization shall be completed within a period of time determined by the Regional Water Board. In limited circumstances stabilization may not be required if the intended function of a specific area of the site necessitates that it remains disturbed.

discharger shall consider the use of plastic materials resistant to solar degradation;

- I. Control stormwater and non-stormwater discharges to minimize downstream channel and bank erosion; and
- m. Control peak flowrates and total volume of stormwater and authorized nonstormwater discharges to minimize channel and streambank erosion and scour in the immediate vicinity of discharge points.
- II.D.2. Dischargers that stabilize soil using bonded-fiber matrices, hydromulches, spray tackifiers, or other land-applied products shall:
 - Apply the product according to the manufacturer's instructions and guidance; and
 - b. Apply the product according to the manufacturer's guidance to allow for ample cure time and to prevent treatment chemicals from being transported by runoff.

II.E. Sediment Controls

- II.E.1. Dischargers shall implement the following site sediment controls:
 - a. Establish and maintain effective perimeter controls;
 - b. Stabilize all construction entrances and exits to sufficiently control erosion and sediment discharges from the site; and
 - c. Design, install, and maintain effective sediment controls to minimize the discharge of pollutants utilizing site-specific BMPs.

At a minimum, design sediment basins and impoundments according to the method provided in the California Stormwater Quality Association Construction BMP Handbook³ and utilize outlet structures that withdraw water from the surface. Dischargers utilizing sediment basins shall complete installation prior to other land disturbance activities.

II.F. Additional Risk Level 2 and 3 Requirements:

II.F.1. Risk Level 2 and 3 dischargers shall implement the following additional erosion and sediment control BMPs for areas under active⁴ construction:

³ California Stormwater Quality Association (CASQA), <u>Construction BMP Handbook</u> (January 2015), <https://www.casqa.org/sites/default/files/casqa-handbookconstruction/master_hanbook_file_2015_sec.pdf> [as of May 20, 2021] (CASQA Construction BMP Handbook)

⁴ Active areas of construction are areas undergoing land surface disturbance and associated site areas. This includes construction activity during the preliminary phase, mass grading phase, streets and utilities phase, and the vertical construction phase.

- a. Design and construct cut and fill slopes in a manner to ensure slope stability and to minimize erosion including, but not limited to, these practices:
 - i. Reduce continuous slope length using terracing and diversions;
 - ii. Reduce slope steepness; and
 - iii. Roughen slope surfaces with large cobble or track walking.
- b. Install linear sediment controls along the toe of the slope, face of the slope, and at the grade breaks of exposed slopes according to sheet flow lengths as shown in Table 1 until the slope has reached Notice of Termination conditions for erosion protection. When infeasible to comply with Table 1 due to site-specific geology or topography, the QSD shall include in the SWPPP a justification for the use of an alternative method to protect slopes from erosion and sediment loss.

Table 1 - Critical Slope and Sheet Flow Length Combinations for Linear Sediment Reduction Barrier

Slope Ratio (Vertical to Horizontal)	Sheet flow length not to exceed
≤ 1:20	Per QSD's specification.
> 1:20 to ≤ 1:4	35 feet
> 1:4 to ≤ 1:3	20 feet
> 1:3 to ≤ 1:2	15 feet
> 1:2	10 feet

- II.F.2. Limit construction activity traffic to and from the project to entrances and exits that employ effective controls to prevent off-site tracking of sediment.
- II.F.3. Maintain and protect all storm drain inlets, perimeter controls, and BMPs at entrances and exits (e.g., tire wash off locations).
- II.F.4. Remove any excess sediment or other construction activity-related materials that are deposited on the impervious roads by vacuuming or sweeping prior to any precipitation event.
- II.F.5. Implement additional site-specific sediment controls upon written request by the Regional Water Boards when the implementation of the other requirements in this Section are determined to inadequately protect the site's receiving water(s).

II.G. Surface Water Buffer⁵

- II.G.1. Dischargers shall provide and maintain natural buffers and/or equivalent erosion and sediment controls when a water of the U.S. is located within 50 feet of the site's earth disturbances, unless infeasible.
- II.G.2. Dischargers shall comply with one of the following alternatives for any discharges to waters of the U.S. located within 50 feet of a site's earth disturbances:
 - a. Provide and maintain a 50-foot undisturbed natural buffer from the edge of the disturbed area to the top of bank;
 - b. Provide and maintain an undisturbed natural buffer that is less than 50 feet and is supplemented by erosion and sediment controls that achieve, in combination, the sediment load reduction equivalent to a 50-foot undisturbed natural buffer. The equivalent sediment load may be calculated using RUSLE2 or another method approved by the Regional Water Board; or
 - c. Implement erosion and sediment controls to achieve the sediment load reduction equivalent to a 50-foot undisturbed natural buffer when infeasible to provide and maintain an undisturbed natural buffer of any size. The equivalent sediment load may be calculated using RUSLE2 or another method approved by the Regional Water Board.

II.H. Pesticide Application

Dischargers shall only apply pesticides that have been authorized for use through California Department of Pesticide Regulation. The application of pesticides shall follow manufacturer's guidance.

II.I. Demolition of Existing Structure

Dischargers shall prevent exposing demolition materials to precipitation. Demolition materials should be covered with an impermeable barrier such as, but not limited to, plastic sheeting prior to precipitation to prevent known contaminants from being mobilized. Dischargers unable to cover demolished material that were not previously investigated or found to be absent of applicable pollutants in reportable quantities shall sample for any non-visible pollutants that may be in stormwater

⁵ The surface water buffer requirements apply to work above the top-of-bank or highwater level of waters of the United States. Work within a channel or streambed (water body-dependent construction), Clean Water Act § 404 projects with a § 401 certification, and projects where no natural surface buffer exists (e.g., concrete channelization) are exempt from the requirements. All types of in-channel work may be regulated under § 401 (Clean Water Act - Regional Boards), § 404 (Clean Water Act - Army Corps of Engineers), or §1602 (California Fish and Game Code).

discharges such as, but not limited to, asbestos, leaded paint, or Poly Chlorinated Biphenyls (PCBs)⁶.

II.J. Maintenance and Repair

- II.J.1. Dischargers shall begin maintaining, repairing, and/or implementing design changes (reviewing alternatives that have not been used yet) to BMPs within 72 hours of identification of failures or other shortcomings and complete the changes as soon as possible, prior to the next forecasted precipitation event.
- II.J.2. Dischargers shall have a Qualified SWPPP Practitioner (QSP) verify all BMP maintenance and repairs were appropriately implemented during the next visual inspection following completion. The QSP may delegate BMP maintenance and repair verification to an appropriately trained delegate.

III. MONITORING REQUIREMENTS

III.A. General Requirements

The monitoring requirements of this Section are issued pursuant to Water Code § 13383 and specifies monitoring requirements for dischargers subject to this Order.

All dischargers shall implement the Construction Site Monitoring Program in compliance with this Section at the time of the commencement of construction activity and shall continue implementation until the project is complete and the project site is stabilized as defined in Section III.H in the Order.

III.B. Monitoring Exceptions

- III.B.1. Dischargers shall conduct visual inspections and collect samples to meet the requirements of this Attachment. Dischargers are not required to physically conduct visual inspections or collect samples under the following conditions:
 - a. During dangerous weather conditions such as electrical storms, flooding, and high winds above 40 miles per hour;
 - b. Outside of scheduled site operating hours; or
 - c. When the site is not accessible to personnel.
- III.B.2. For inactive projects, dischargers may reduce the visual inspection frequency and suspend sampling per Section III.G of the Order. Dischargers shall provide an explanation with supporting information for all missed visual inspections or sampling required by this Attachment, to be included in the Annual Report.

⁶ PCBs were used between January 1, 1950 and January 1, 1980 and should be considered to be potentially present in structures built during that timeframe. "Structure", in this instance, shall have been constructed with floor space (such as a building).

III.C. Visual Inspection Requirements

III.C.1. Dischargers shall perform visual inspections, based on their Risk Level, in accordance with Table 2 below. The purpose of visual inspections is, to identify and record BMPs that need maintenance to operate effectively, that have failed, or that could fail to operate as intended. Except as specified in Section III.C.3 below, inspectors shall be the Qualified SWPPP Developer, Qualified SWPPP Practitioner, or be trained by the Qualified SWPPP Practitioner.

Risk Level	Weekly	Pre-Qualifying Precipitation Event	During Qualifying Precipitation Event	Post-Qualifying Precipitation Event
1	Х	X	X	X
2	Х	X	X	X
3	X	X	X	X

Table 2 – Visual Inspection Schedule⁷

- III.C.2. Dischargers shall conduct weekly visual inspections to ensure that BMPs are properly installed and maintained. A pre-, during, or post-qualifying precipitation event inspection also satisfies the weekly visual inspection requirement.
- III.C.3. Dischargers shall have a QSP conduct a pre-Qualifying Precipitation Event inspection within 72 hours prior to any weather pattern that is forecasted to have a 50 percent or greater chance of 0.5 inches or more in a 24-hour period. Precipitation forecast information shall be obtained from the <u>National Weather</u> <u>Service Forecast Office</u> (e.g., by entering the zip code of the project's location at https://www.weather.gov/) and shall be included as part of the inspection checklist weather information. If extended forecast precipitation data (greater than three days) is available from the National Weather Service, the preprecipitation event inspection may be done up to 120 hours in advance. The pre-Qualifying Precipitation Event inspection shall include an inspection of the following:
 - a. All stormwater drainage areas to identify leaks, spills, or uncontrolled pollutant sources and when necessary, implement appropriate corrective actions to control pollutant sources.
 - b. All BMPs to identify whether they have been properly implemented in accordance with the SWPPP, and when necessary, implement appropriate corrective actions to control pollutant sources.
 - c. All stormwater storage and containment areas to detect leaks and check for available capacity to prevent overflow.
- III.C.4. Dischargers shall conduct visual inspections at least once every 24-hour period during Qualifying Precipitation Events. Qualifying Precipitation Events are

⁷ This table is limited to routine weekly inspections and Qualifying Precipitation Event related inspections. Other visual inspections may be required under this Permit and are described in the applicable sections.

extended for each subsequent 24-hour period forecast to have at least 0.25 inches of precipitation.

- III.C.5. Dischargers shall conduct post-Qualifying Precipitation Event visual inspections within 96 hours after each Qualifying Precipitation Event if 0.5 inches or more precipitation is measured during the duration of the Qualifying Precipitation Event using the onsite rain gauge. The inspection is to:
 - a. Identify if BMPs were adequately designed, implemented, and effective;
 - b. Identify BMPs that require repair or replacement due to damage; and
 - c. Identify additional BMPs that need to be implemented and revise the SWPPP accordingly.
- III.C.6. Dischargers shall conduct visual inspections during scheduled site operating hours.
- III.C.7. For each required inspection, dischargers shall develop and complete an inspection checklist that, at a minimum includes:
 - a. Inspection type (weekly, pre-precipitation, daily precipitation, or postprecipitation event);
 - b. Inspection date and time the inspection was conducted;
 - c. Weather information, including the presence or absence of precipitation, an estimate of the beginning of the Qualifying Precipitation Event, duration of the event, date of the end of the Qualifying Precipitation Event, and the amount of precipitation in inches;
 - d. Site information, including stage of construction, activities completed since last inspection, and approximate area of the site exposed;
 - e. A description of any BMPs evaluated and any deficiencies noted, including those that may have resulted in the release of non-visible pollutants;
 - f. A list of BMPs inspected, including erosion controls, sediment controls, chemical and waste controls, and non-stormwater controls;
 - g. Report of the presence of any floating and suspended materials, odors, discolorations, visible sheens, and any sources of pollutants in discharges and contained stormwater;
 - h. Any corrective actions required, including any necessary changes to the SWPPP and the associated implementation dates;
 - i. Photographs of areas of concern and the QSP's description of the problem, if any; and
 - j. Inspector's name, title, and certification, if any.

III.D. Water Quality Monitoring Requirements

Dischargers shall collect samples of discharges, based on their Risk Level in accordance with Table 3 and the requirements below, to monitor water quality and

assess compliance with the requirements of this General Permit. Samplers shall be the QSD, QSP, or be trained by the QSP.

Risk Level	Stormwater Discharge Sample Collection (as applicable)	Receiving Water Sample Collection (as applicable)	Non-Visible Sample Collection (as applicable)
1	Not Applicable	Not Applicable	Х
2	Х	Not Applicable	Х
3	Х	X (Post-exceedance)	х

Table 3 – Sample Collection Schedule

- III.D.1. Risk Level 2 and 3 Stormwater Discharge Monitoring Requirements
- III.D.1.a. Risk Level 2 and 3 dischargers shall collect stormwater grab samples, from all discharge locations incorporating runoff from project construction sites⁸, during discharge and within site operating hours. The grab samples shall be representative of the discharge flow and characteristics.
- III.D.1.b. Risk Level 2 and 3 dischargers shall obtain one sample from each discharge location per 24-hour period of each Qualifying Precipitation Event, during active discharge.
- III.D.1.c. Risk Level 2 and 3 dischargers shall collect samples of stored or contained stormwater during discharge from the impoundment, in accordance with Attachment J.
- III.D.1.d. Risk Level 2 and 3 dischargers shall analyze all samples for:
 - i. pH and turbidity (refer to Order, Section IV.C.3.c and d); and
 - ii. Any additional parameter required by the Regional Water Board.
- III.D.1.e. Risk Level 2 and 3 dischargers may sample run-on from surrounding areas if there is reason to believe run-on may contribute to exceedance of numeric action levels and/or numeric effluent limitations.
- III.D.2. Risk Level 3 Receiving Water Monitoring Requirements
- III.D.2.a. Risk Level 3 dischargers who discharge directly into receiving waters are also required to monitor that receiving water if sampling results from the discharge monitoring location meets either of the following conditions:
 - i. pH value falls outside of the range of 6.0 and 9.0 pH units; or
 - ii. Turbidity exceeds 500 NTU.

⁸ The Glossary definition of 'site' applies here, i.e., *The area where the construction activity is physically located or conducted, including staging, storage, and access areas.*

- III.D.2.b. Receiving water monitoring does not apply if run-on from a forest fire or any other natural disaster caused the stormwater results to fall outside the pH range or exceed the turbidity value.
- III.D.2.c. Risk Level 3 dischargers required to conduct receiving water monitoring shall collect samples as follows:
 - i. Collect, at minimum, one upstream receiving water sample from an accessible and safe location that is:
 - 1. Representative of the receiving water;
 - 2. As close as possible to the discharge location; and
 - 3. Upstream from the discharge location.
 - ii. Collect, at minimum, one downstream receiving water sample from an accessible and safe location that is:
 - 1. Representative of the receiving water;
 - 2. As close as possible to the discharge location; and
 - 3. Downstream from the discharge location.
- III.D.2.d. Risk Level 3 dischargers shall analyze the samples for the parameter that triggered this monitoring (either pH or turbidity, or both).
- III.D.2.e. Risk Level 3 dischargers shall collect the samples once every 24-hour period of the Qualifying Precipitation Event.
- III.D.2.f. Risk Level 3 dischargers shall specify the specific locations where samples were collected, date and time of sample collection, as well as constituents analyzed.
- III.D.2.g. The Regional Water Board delegate may require, in writing, that the Risk Level 3 discharger continue to sample the receiving water for the parameter that required this monitoring (pH and/or turbidity) after the Qualifying Precipitation Event ends.
- III.D.3. Non-Visible Pollutant Monitoring Requirements
- III.D.3.a. Dischargers shall implement sampling and analysis requirements to monitor non-visible pollutants when there is:
 - i. Evidence of pollutant releases that are not visually detectable in stormwater discharges; and
 - ii. Releases of substances which could cause or contribute to an exceedance of water quality objectives in the receiving waters.
- III.D.3.b. Dischargers are required to conduct sampling and analysis for non-visible pollutants identified in the SWPPP or otherwise known to be on site, only when the pollutants may be discharged due to failure to implement BMPs, a container spill or leak, or a BMP breach, failure, or malfunction.

- III.D.3.c. Dischargers shall collect at least one sample, within 8 hours, from each discharge location hydraulically down-gradient from the observed triggering event or condition.
- III.D.3.d. Dischargers shall continue to collect at least one sample per applicable discharge location for each 24-hour period that there is discharge, until the necessary corrective actions are completed to control further discharge of the pollutant.
- III.D.3.e. Dischargers are not required to sample if one of the conditions described in Section III.D.3.b above (e.g., breach or spill) occurs and, prior to discharge, the material containing the pollutant is fully remediated or removed; and BMPs to control the pollutant are implemented, maintained, or replaced as necessary.
- III.D.3.f. Dischargers shall analyze samples in the field or submit them to a laboratory as specified in Section III.F of this Attachment for analysis of all non-visible pollutants suspected to be present in the discharge, including applicable TMDL-specific pollutants listed in Table H-2 in Attachment H.

III.E. Sample Collection and Handling Instructions

- III.E.1. Dischargers shall:
 - a. Identify applicable parameters that require laboratory analysis for each stormwater discharge location (pH and turbidity are typically analyzed with field meters).
 - b. Request the laboratory provide the appropriate number of sample containers, types of containers, sample container labels, blank Chain of Custody forms, and sample preservation instructions.
 - c. Use the appropriate sample shipping method to the laboratory. The laboratory should receive samples within 48 hours of the physical sampling (unless otherwise required by the laboratory to meet all method hold times). The options are to either deliver the samples to the laboratory, arrange to have the laboratory pick them up, or ship them overnight to the laboratory.
 - d. Use only the sample containers provided/specified by the laboratory to collect and store samples. Use of any other type of containers could cause sample contamination.
 - e. Prevent sample contamination by not touching or putting anything into the sample containers before collecting stormwater samples.
 - f. Not overfill sample containers. Overfilling can change the analytical results.
 - g. Secure each sample container cap without stripping the cap threads.
 - h. Label each sample container. The label shall identify the date and time of sample collection, the person taking the sample, and the sample collection location or discharge point. The label should also identify any sample containers that have been preserved.

- i. Carefully pack the sample container into an ice chest or refrigerator to prevent breakage and maintain temperature during shipment; frozen ice packs or ice is placed into the shipping container to keep the sample close to 4° C (39° F) until arriving at the laboratory (do not freeze samples).
- j. Complete a Chain of Custody form with each set of samples. The Chain of Custody form shall include the discharger's name, address, and phone number, identification of each sample container and sample collection point, person collecting the samples, the date and time each sample container was filled, the analysis that is required for each sample container, and both the signatures of the persons relinquishing and receiving the sample containers.
- III.E.2. The Discharger shall designate and train personnel for the collection, maintenance, and shipment of samples in accordance with the above sample protocols and laboratory-specific practices.
- III.E.3. Dischargers shall perform all sampling and preservation protocols in accordance with the 40 Code of Federal Regulations Part 136 and the current edition of "Standard Methods for the Examination of Water and Wastewater" (American Public Health Association).⁹
- III.E.4. Dischargers may refer to the Surface Water Ambient Monitoring Program's (SWAMP) Quality Assurance Program Plan (QAPrP) for more information on sampling collection and analysis.¹⁰

III.F. Analytical Methods Requirements

III.F.1. Dischargers shall refer to Table 4 for applicable test methods, detection limits, and reporting units.

⁹ Unless other test procedures have been specified in this General Permit or by the Water Boards.

¹⁰ Additional information regarding the <u>SWAMP QAPrP</u> can be found at: <https://www.waterboards.ca.gov/water_issues/programs/swamp/quality_assurance. html#qaprp>. [as of October 20, 2020]

Parameter	Test Method	Discharger Type	Method Detection Limit	Reporting Units
рН	Field test with calibrated portable instrument using U.S. EPA approved procedures	Risk Level 2 and 3	0.2	pH units
Turbidity	U.S. EPA 0180.1 and/or field test with calibrated portable instrument	Risk Level 2 and 3	1	NTU
Non-Visible Pollutant Parameter(s)	U.S. EPA-approved test method for the specific pollutant parameter	All Risk Levels	Dependent on the test method	Dependent on the test method

Table 4 - Test Methods, Detection Limits and Reporting Units

- III.F.2. All monitoring instruments and equipment shall be calibrated and maintained in accordance with manufacturers' specifications to ensure accurate measurements. Additionally, records of calibration shall be retained for at least three years and made available upon request.
- III.F.3. Risk Level 2 and 3 dischargers shall perform pH analysis on-site with a calibrated pH meter using a U.S. EPA acceptable test method.
- III.F.4. Risk Level 2 and 3 dischargers shall perform turbidity analysis using a calibrated turbidity meter (turbidimeter), either on-site or at a State Water Board Environmental Laboratory Accreditation Program (ELAP)-accredited laboratory. Acceptable test methods include Standard Method 2130 B or U.S. EPA Method 180.1.
- III.F.5. All analyses of laboratory-analyzed parameters shall be sent to and conducted at a laboratory recognized by the State Water Board Environmental Laboratory Accreditation Program (ELAP), with the exception of field analysis conducted by the discharger for turbidity and pH.
- III.F.6. All dischargers shall assign a value of zero (0) for all non-visible pollutant analytical results less than the minimum level (reporting limit), as reported by the laboratory, used in calculations required by this permit (e.g., numeric action level and numeric effluent limitation exceedance determinations), so long as a sufficiently sensitive test method was used as evidenced by the reported method detection limit and minimum level.

III.G. Exceedance Response Requirements¹¹

III.G.1. Dischargers are subject to the applicable numeric action levels and/or numeric effluent limitations based on their Risk Level as shown in Table 5 below.

¹¹ Terms including, but not limited to, numeric action level, numeric effluent limitation, and exceedances are defined in Attachment B of this General Permit.

Parameter	Discharger Type	Numeric Action Level	Numeric Effluent Limitation	
рН	Risk Level 2 and 3	Lower = 6.5 Upper = 8.5	Not Applicable	
Turbidity	Risk Level 2 and 3	250 NTU	Not Applicable	
TMDL-related Pollutant	Responsible Dischargers with a project of any Risk Level	Refer to Table H-2 in Attachment H	Refer to Table H-2 in Attachment H	

Table 5 - Numeric Action Levels and Numeric Effluent Limitations

- III.G.2. For pH and turbidity, the discharger shall use the field meter readings obtained from each discharge location per day of discharge to determine if there has been an exceedance of the numeric action levels.
- III.G.3. Whenever analytical results indicate that the discharge is below the lower pH value, above the upper pH value, exceeds the turbidity value, or exceeds an applicable TMDL-related numeric action level or numeric effluent limitation, dischargers shall determine the source(s) of the pollutant and immediately implement corrective actions to:
 - Meet Best Available Technology Economically Achievable and Best Conventional Pollutant Control Technology requirements in 40 Code of Federal Regulations §§ 450.21 through 450.23¹²; and
 - b. Reduce or prevent pollutants in stormwater and authorized non-stormwater discharges from causing further exceedances.
- III.G.4. Dischargers shall iterate corrective actions until the discharge is in compliance with the applicable numeric action level(s).
- III.G.5. The source evaluation shall be kept with the SWPPP and specifically address what corrective actions were taken or will be taken and provide a schedule for their completion.

IV. REPORTING REQUIREMENTS

IV.A. Visual Inspections

Dischargers shall keep all completed inspection checklists and related documentation with the SWPPP on-site or electronically.

¹² United States Environmental Protection Agency, <u>Construction and Development</u> <u>Effluent Limitation Guidelines §§ 450.21 through 450.23</u>, <https://www.ecfr.gov/current/title-40/chapter-I/subchapter-N/part-450/subpart-B?toc=1> [as of June 28, 2022].

IV.B. Water Quality Monitoring

- IV.B.1. Risk Level 2 and 3 Stormwater Discharge Monitoring Reporting
- IV.B.1.a. Risk Level 2 and 3 dischargers shall electronically submit through SMARTS all field sampling results within 30 days of the completion of the precipitation event or within 10 days if the field sampling results demonstrate the exceedance of the pH, and/or turbidity numeric action levels.
- IV.B.1.b. Risk Level 2 and 3 dischargers that exceeded the pH and/or turbidity numeric action levels shall prepare a Numeric Action Level Exceedance Report when requested, in writing, from a Regional Water Board delegate and shall submit and certify each Numeric Action Level Exceedance Report through SMARTS within 30 days of receiving the written request, in accordance with Section IV of this General Permit's Order.
- IV.B.1.c. The Numeric Action Level Exceedance Report shall include:
 - i. The analytical method(s), method reporting unit(s), and method detection limit(s) for each parameter;
 - ii. The date, place, time of sampling, visual inspections, and/or measurements, including precipitation; and
 - iii. An assessment of the existing BMPs associated with the sample that exceeded the numeric action level, a description of each corrective action taken including photographs, and date of implementation.
- IV.B.1.d. Risk Level 2 and 3 dischargers that prepared a Numeric Action Level Exceedance Report shall retain a copy of the report for a minimum of three years after the date the exceedance report is certified and submitted.
- IV.B.2. Risk Level 3 Receiving Water Monitoring Reporting
- IV.B.2.a. Risk Level 3 dischargers shall electronically submit all receiving water sample results through SMARTS within 10 days of a precipitation event.
- IV.B.3. Non-Visible Pollutant Monitoring Reporting
- IV.B.3.a. All dischargers that conducted non-visible pollutant monitoring shall electronically submit through SMARTS all field and/or analytical sampling results within 30 days after obtaining the analytical result or within 10 days after if the analytical results demonstrate the exceedance of an applicable TMDL-related numeric action level or numeric effluent limitation or Basin Plan parameter.
- IV.B.3.b. All dischargers that exceeded an applicable TMDL-related numeric action level shall prepare a Numeric Action Level Exceedance Report when requested, in writing, from a Regional Water Board delegate and shall submit and certify each Numeric Action Level Exceedance Report through SMARTS within 30 days of receiving the written request, in accordance with Section IV of this General Permit's Order.

- IV.B.3.c. The Numeric Action Level Exceedance Report shall include:
 - i. The analytical method(s), method reporting unit(s), and method detection limit(s) for each parameter;
 - ii. The date, place, time of sampling, visual inspections, and/or measurements, including precipitation; and
 - iii. An assessment of the existing BMPs associated with the sample that exceeded the numeric action level, a description of each corrective action taken including photographs, and date of implementation.
- IV.B.3.d. All dischargers that prepared a Numeric Action Level Exceedance Report shall retain a copy of the report for a minimum of three years after the date the exceedance report is certified and submitted.
- IV.B.3.e. All dischargers that exceed an applicable TMDL-related numeric effluent limitation shall comply with the water quality-based corrective action requirements in Section VI.Q of the Order.